854
Views
0
CrossRef citations to date
0
Altmetric
Clinical Study

Altered resting-state cerebellar-cerebral functional connectivity in patients with end-stage renal disease

, , , , , & show all
Article: 2238829 | Received 27 Feb 2023, Accepted 15 Jul 2023, Published online: 24 Jul 2023

References

  • Viggiano D, Wagner CA, Martino G, et al. Mechanisms of cognitive dysfunction in CKD. Nat Rev Nephrol. 2020;16(8):1–8. doi: 10.1038/s41581-020-0266-9.
  • Kelly DM, Rothwell PM. Disentangling the relationship between chronic kidney disease and cognitive disorders. Front Neurol. 2022;13:830064. doi: 10.3389/fneur.2022.830064.
  • Sharma A, Yabes J, Al Mawed S, et al. Impact of cognitive function change on mortality in renal transplant and end-stage renal disease patients. Am J Nephrol. 2016;44(6):462–472. doi: 10.1159/000451059.
  • Drew DA, Weiner DE, Sarnak MJ. Cognitive impairment in CKD: pathophysiology, management, and prevention. Am J Kidney Dis. 2019;74(6):782–790. doi: 10.1053/j.ajkd.2019.05.017.
  • Zhang LJ, Wen J, Ni L, et al. Predominant gray matter volume loss in patients with end-stage renal disease: a voxel-based morphometry study. Metab Brain Dis. 2013;28(4):647–654. doi: 10.1007/s11011-013-9438-7.
  • Dong J, Ma X, Lin W, et al. Aberrant cortical thickness in neurologically asymptomatic patients with end-stage renal disease. Neuropsychiatr Dis Treat. 2018;14:1929–1939. doi: 10.2147/NDT.S170106.
  • Mu J, Chen T, Li P, et al. Altered white matter microstructure mediates the relationship between hemoglobin levels and cognitive control deficits in end‐stage renal disease patients. Hum Brain Mapp. 2018;39(12):4766–4775. doi: 10.1002/hbm.24321.
  • Zheng J, Jiao Z, Dai J, et al. Abnormal cerebral micro-structures in end-stage renal disease patients related to mild cognitive impairment. Eur J Radiol. 2022;157:110597. doi: 10.1016/j.ejrad.2022.110597.
  • Li P, Mu J, Ma X, et al. Neurovascular coupling dysfunction in end-stage renal disease patients related to cognitive impairment. J Cereb Blood Flow Metab. 2021;41(10):2593–2606. doi: 10.1177/0271678X211007960.
  • Cao J, Liu G, Li X, et al. Dynamic functional connectivity changes in the triple networks and its association with cognitive impairment in hemodialysis patients. Brain Behav. 2021;11(8):e2314.
  • Ni L, Wen J, Zhang LJ, et al. Aberrant default-mode functional connectivity in patients with end-stage renal disease: a resting-state functional MR imaging study. Radiology. 2014;271(2):543–552. doi: 10.1148/radiol.13130816.
  • Ma X, Jiang G, Li S, et al. Aberrant functional connectome in neurologically asymptomatic patients with end-stage renal disease. PLoS One. 2015;10(3):e0121085. doi: 10.1371/journal.pone.0121085.
  • Mu J, Liu X, Ma S, et al. The variation of motor-related brain structure and its relation to abnormal motor behaviors in end-stage renal disease patients with restless legs syndrome. Brain Imaging Behav. 2020;14(1):42–50. doi: 10.1007/s11682-018-9968-z.
  • Hu R, Gao L, Chen P, et al. How do you feel now? The salience network functional connectivity in end-stage renal disease. Front Neurosci. 2020;14:533910. doi: 10.3389/fnins.2020.533910.
  • Chen HJ, Wang YF, Qi R, et al. Altered amygdala resting-state functional connectivity in maintenance hemodialysis end-stage renal disease patients with depressive mood. Mol Neurobiol. 2017;54(3):2223–2233. doi: 10.1007/s12035-016-9811-8.
  • Mu J, Chen T, Liu Q, et al. Abnormal interaction between cognitive control network and affective network in patients with end-stage renal disease. Brain Imaging Behav. 2018;12(4):1099–1111. doi: 10.1007/s11682-017-9782-z.
  • Habas C, Kamdar N, Nguyen D, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–8594. doi: 10.1523/JNEUROSCI.1868-09.2009.
  • Chen Z, Zhang R, Huo H, et al. Functional connectome of human cerebellum. NeuroImage. 2022;251:119015. doi: 10.1016/j.neuroimage.2022.119015.
  • Krienen FM, Buckner RL. Segregated Fronto-Cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–2497. doi: 10.1093/cercor/bhp135.
  • Castellazzi G, Palesi F, Casali S, et al. A comprehensive assessment of resting state networks: bidirectional modification of functional integrity in cerebro-cerebellar networks in dementia. Front Neurosci. 2014;8:223. doi: 10.3389/fnins.2014.00223.
  • Cao Y, Wu B, Chen T, et al. Altered intrinsic brain activity in patients with hepatic encephalopathy. J Neurosci Res. 2021;99(5):1337–1353. doi: 10.1002/jnr.24788.
  • Zhu D M, Yang Y, Zhang Y, et al. Cerebellar-cerebral dynamic functional connectivity alterations in major depressive disorder. J Affect Disord. 2020;275:319–328. doi: 10.1016/j.jad.2020.06.062.
  • Murayama K, Tomiyama H, Tsuruta S, et al. Aberrant resting-state cerebellar-cerebral functional connectivity in unmedicated patients with obsessive-compulsive disorder. Front Psychiatry. 2021;12:659616. doi: 10.3389/fpsyt.2021.659616.
  • Jiang Y, Gao Q, Liu Y, et al. Reduced white matter integrity in patients with end-stage and non-end-stage chronic kidney disease: a tract-based spatial statistics study. Front Hum Neurosci. 2021;15:774236. doi: 10.3389/fnhum.2021.774236.
  • Chou MC, Hsieh TJ, Lin YL, et al. Widespread white matter alterations in patients with end-stage renal disease: a voxelwise diffusion tensor imaging study. AJNR Am J Neuroradiol. 2013;34(10):1945–1951. doi: 10.3174/ajnr.A3511.
  • Bai Z, Ma X, Tian J, et al. Brain microstructural abnormalities are related to physiological alterations in end-stage renal disease. PLoS One. 2016;11(5):e0155902. doi: 10.1371/journal.pone.0155902.
  • Li P, Ding D, Ma X Y, et al. Altered intrinsic brain activity and memory performance improvement in patients with end-stage renal disease during a single dialysis session. Brain Imaging Behav. 2018;12(6):1640–1649. doi: 10.1007/s11682-018-9828-x.
  • Qiu Y, Lv X, Su H, et al. Structural and functional brain alterations in end stage renal disease patients on routine hemodialysis: a voxel-based morphometry and resting state functional connectivity study. PLoS One. 2014;9(5):e98346. doi: 10.1371/journal.pone.0098346.
  • Chou MC, Ko CH, Chang JM, et al. Disruptions of brain structural network in end-stage renal disease patients with long-term hemodialysis and normal-appearing brain tissues. J Neuroradiol. 2019;46(4):256–262. doi: 10.1016/j.neurad.2018.04.004.
  • Li J, Choi S, Joshi AA, et al. Temporal non-local means filtering for studies of intrinsic brain connectivity from individual resting fMRI. Med Image Anal. 2020;61:101635. doi: 10.1016/j.media.2020.101635.
  • Etkin A, Maron-Katz A, Wu W, et al. Using fMRI connectivity to define a treatment-resistant form of post-traumatic stress disorder. Sci. Transl. Med. 2019;11(486):eaal3236. doi: 10.1126/scitranslmed.aal3236.
  • O’Reilly JX, Beckmann CF, Tomassini V, et al. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4):953–965. doi: 10.1093/cercor/bhp157.
  • Tu Y, Zeng F, Lan L, et al. An fMRI-based neural marker for migraine without aura. Neurology. 2020;94(7):e741–e751. doi: 10.1212/WNL.0000000000008962.
  • Mizuno Y, Jung M, Fujisawa TX, et al. Catechol-O-methyltransferase polymorphism is associated with the cortico-cerebellar functional connectivity of executive function in children with attention-deficit/hyperactivity disorder. Sci Rep. 2017;7(1):4850. doi: 10.1038/s41598-017-04579-8.
  • Puy L, Bugnicourt JM, Liabeuf S, et al. Cognitive impairments and dysexecutive behavioral disorders in chronic kidney disease. J Neuropsychiatry Clin Neurosci. 2018;30(4):310–317. doi: 10.1176/appi.neuropsych.18030047.
  • Luo S, Qi RF, Wen JQ, et al. Abnormal intrinsic brain activity patterns in patients with End-Stage renal disease undergoing peritoneal dialysis: a resting-state functional MR imaging study. Radiology. 2016;278(1):181–189. doi: 10.1148/radiol.2015141913.
  • Li S, Ma X, Huang R, et al. Abnormal degree centrality in neurologically asymptomatic patients with end-stage renal disease: a resting-state fMRI study. Clin Neurophysiol. 2016;127(1):602–609. doi: 10.1016/j.clinph.2015.06.022.
  • Cui D, Zhang L, Zheng F, et al. Volumetric reduction of cerebellar lobules associated with memory decline across the adult lifespan. Quant Imaging Med Surg. 2020;10(1):148–159. doi: 10.21037/qims.2019.10.19.
  • Loeffler LAK, Radke S, Habel U, et al. The regulation of positive and negative emotions through instructed causal attributions in lifetime depression – a functional magnetic resonance imaging study. Neuroimage Clin. 2018;20:1233–1245. doi: 10.1016/j.nicl.2018.10.025.
  • Strang NM, Pruessner J, Pollak SD. Developmental changes in adolescents’ neural response to challenge. Dev Cogn Neurosci. 2011;1(4):560–569. doi: 10.1016/j.dcn.2011.06.006.
  • Yu W, Krook-Magnuson E. Cognitive collaborations: bidirectional functional connectivity between the cerebellum and the hippocampus. Front Syst Neurosci. 2015;9:177. doi: 10.3389/fnsys.2015.00177.
  • Uddin LQ, Kelly AM, Biswal BB, et al. Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum Brain Mapp. 2009;30(2):625–637. doi: 10.1002/hbm.20531.
  • Hillary FG, Roman CA, Venkatesan U, et al. Hyperconnectivity is a fundamental response to neurological disruption. Neuropsychology. 2015;29(1):59–75. doi: 10.1037/neu0000110.
  • Battaglia F, Quartarone A, Bagnato S, et al. Brain dysfunction in uremia: a question of cortical hyperexcitability? Clin Neurophysiol. 2005;116(7):1507–1514. doi: 10.1016/j.clinph.2005.02.016.
  • Douaud G, Filippini N, Knight S, et al. Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. Brain. 2011;134(Pt 12):3470–3479. doi: 10.1093/brain/awr279.
  • Zhou Z, Zhong S, Liang Y, et al. Serum uric acid and the risk of dementia: a systematic review and meta-analysis. Front Aging Neurosci. 2021;13:625690. doi: 10.3389/fnagi.2021.625690.