535
Views
0
CrossRef citations to date
0
Altmetric
Acute Kidney Injury

Research on the global trends of COVID-19 associated acute kidney injury: a bibliometric analysis

, , , , &
Article: 2338484 | Received 22 Nov 2023, Accepted 29 Mar 2024, Published online: 04 Jun 2024

References

  • Ostermann M, Bellomo R, Burdmann EA, et al. Controversies in acute kidney injury: conclusions from a kidney disease: improving global outcomes (KDIGO) conference. Kidney Int. 2020;98(2):1–17. doi: 10.1016/j.kint.2020.04.020.
  • Coronavirus disease (COVID-19). https://www.who.int/news-room/fact-sheets/detail/coronavirus-disease-(covid-19).
  • Zheng KI, Feng G, Liu WY, et al. Extrapulmonary complications of COVID-19: a multisystem disease?. J Med Virol. 2021;93(1):323–335. doi: 10.1002/jmv.26294.
  • Nadim MK, Forni LG, Mehta RL, et al. COVID-19-associated acute kidney injury: consensus report of the 25th acute disease quality initiative (ADQI) workgroup. Nat Rev Nephrol. 2020;16(12):747–764. doi:10/gjnj2s.
  • Legrand M, Bell S, Forni L, et al. Pathophysiology of COVID-19-associated acute kidney injury. Nat Rev Nephrol. 2021;17(11):751–764. doi: 10/gk5qgh.
  • Teixeira JP, Barone S, Zahedi K, et al. Kidney injury in COVID-19: epidemiology, molecular mechanisms and potential therapeutic targets. Int J Mol Sci. 2022;23(4):2242. doi: 10/gq73ks.
  • Gabarre P, Dumas G, Dupont T, et al. Acute kidney injury in critically ill patients with COVID-19. Intensive Care Med. 2020;46(7):1339–1348. doi:10/gg525w.
  • Ng JH, Hirsch JS, Hazzan A, et al. Outcomes among patients hospitalized with COVID-19 and acute kidney injury. Am J Kidney Dis. 2021;77(2):204–215.e1. doi: 10.1053/j.ajkd.2020.09.002.
  • Lumlertgul N, Pirondini L, Cooney E, et al. Acute kidney injury prevalence, progression and long-term outcomes in critically ill patients with COVID-19: a cohort study. Ann Intensive Care. 2021;11(1):123. doi: 10/gp6xvs.
  • Pan W, Zheng P, Huang J, et al. Research hotspot detection of health information based on the“DEAN”process of data clean. J. Modern Inform. 2018;38(10):73–77.
  • Statement on the fifteenth meeting of the IHR. 2005. Emergency Committee on the COVID-19 pandemic. https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic.
  • Villa G, Romagnoli S, De Rosa S, et al. Blood purification therapy with a hemodiafilter featuring enhanced adsorptive properties for cytokine removal in patients presenting COVID-19: a pilot study. Crit Care. 2020;24(1):605. doi: 10.1186/s13054-020-03322-6.
  • Ronco C, Reis T, Husain-Syed F. Management of acute kidney injury in patients with COVID-19. Lancet Respir Med. 2020;8(7):738–742. doi: 10.1016/S2213-2600(20)30229-0.
  • Wang F, Ran L, Qian C, et al. Epidemiology and outcomes of acute kidney injury in COVID-19 patients with acute respiratory distress syndrome: a multicenter retrospective study. Blood Purif. 2021;50(4-5):499–505. doi: 10.1159/000512371.
  • Lu JY, Boparai MS, Shi C, et al. Long-term outcomes of COVID-19 survivors with hospital AKI: association with time to recovery from AKI. Nephrol Dial Transplant. 2023;38(10):2160–2169. doi: 10.1093/ndt/gfad020.
  • Hoogenboom WS, Lu JQ, Musheyev B, et al. Prophylactic versus therapeutic dose anticoagulation effects on survival among critically ill patients with COVID-19. PLoS One. 2022;17(1):e0262811. doi: 10.1371/journal.pone.0262811.
  • Sancho Ferrando E, Hanslin K, Hultström M, et al. Soluble TNF receptors predict acute kidney injury and mortality in critically ill COVID-19 patients: a prospective observational study. Cytokine. 2022;149:155727. doi: 10.1016/j.cyto.2021.155727.
  • Luther T, Eckerbom P, Cox E, et al. Decreased renal perfusion during acute kidney injury in critical COVID-19 assessed by magnetic resonance imaging: a prospective case control study. Crit Care. 2022;26(1):262. doi: 10.1186/s13054-022-04132-8.
  • Tsai MS, Shih WT, Yang YH, et al. Potential inhibitor for blocking binding between ACE2 and SARS-CoV-2 spike protein with mutations. Biomed Pharmacother. 2022;149:112802. doi: 10.1016/j.biopha.2022.112802.
  • Weidenbacher PAB, Waltari E, De Los RiosKobara I, et al. Converting non-neutralizing SARS-CoV-2 antibodies into broad-spectrum inhibitors. Nat Chem Biol. 2022;18(11):1270–1276. doi: 10.1038/s41589-022-01140-1.
  • Weidenbacher PAB, Sanyal M, Friedland N, et al. Author correction: a ferritin-based COVID-19 nanoparticle vaccine that elicits robust, durable, broad-spectrum neutralizing antisera in non-human primates. Nat Commun. 2023;14(1):6211. doi: 10.1038/s41467-023-42061-4.
  • Fishbane S, Hirsch JS. Erythropoiesis-stimulating agent treatment in patients with COVID-19. Am J Kidney Dis. 2020;76(3):303–305. doi: 10.1053/j.ajkd.2020.05.002.
  • Hirsch JS, Ng JH, Ross DW, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020;98(1):209–218. doi: 10/ggx24k.
  • Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395(10236):1569–1578. doi: 10.1016/S0140-6736(20)31022-9.
  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
  • Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829–838. doi: 10/ggppqm.
  • Giguère P, Deschenes MJ, Van Loon M, et al. Management and outcome of COVID-19 infection using nirmatrelvir/ritonavir in kidney transplant patients. Clin J Am Soc Nephrol. 2023;18(7):913–919. doi: 10.2215/CJN.0000000000000186.
  • Xu K, Shang N, Levitman A, et al. Elevated neutrophil gelatinase-associated lipocalin is associated with the severity of kidney injury and poor prognosis of patients with COVID-19. Kidney Int Rep. 2021;6(12):2979–2992. doi: 10.1016/j.ekir.2021.09.005.
  • Menez S, Moledina DG, Thiessen-Philbrook H, et al. Prognostic significance of urinary biomarkers in patients hospitalized with COVID-19. Am J Kidney Dis. 2022;79(2):257–267.e1. doi: 10.1053/j.ajkd.2021.09.008.
  • Xiao Z, Huang Q, Yang Y, et al. Emerging early diagnostic methods for acute kidney injury[J]. Theranostics. 2022;12(6):2963–2986. doi: 10.7150/thno.71064.
  • Qian JY, Wang B, Lv LL, et al. Pathogenesis of acute kidney injury in coronavirus disease 2019. Front Physiol. 2021;12:586589. doi: 10.3389/fphys.2021.586589.
  • Al Rumaihi K, Khalafalla K, Arafa M, et al. COVID-19 and renal involvement: a prospective cohort study assessing the impact of mild SARS-CoV-2 infection on the kidney function of young healthy males. Int Urol Nephrol. 2022;55(1):201–209. doi: 10.1007/s11255-022-03301-6.
  • Mottaghi A, Alipour F, Alibeik N, et al. Serum cystatin C and inflammatory factors related to COVID-19 consequences. BMC Infect Dis. 2023;23(1):339. doi: 10.1186/s12879-023-08258-0.
  • Wu W, Wang W, Liang L, et al. Treatment with quercetin inhibits SARS-CoV-2 N protein-induced acute kidney injury by blocking Smad3-dependent G1 cell-cycle arrest. Mol Ther. 2022;31(2):344–361. doi: 10.1016/j.ymthe.2022.12.002.
  • Huang C, Huang L, Wang Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2023;401(10393):e21–e33. doi: 10.1016/S0140-6736(23)00810-3.
  • Gu X, Huang L, Cui D, et al. Association of acute kidney injury with 1-year outcome of kidney function in hospital survivors with COVID-19: a cohort study. EBioMedicine. 2022;76:103817. doi: 10.1016/j.ebiom.2022.103817.
  • Zhong M, Lin M. Bibliometric analysis for economy in COVID-19 pandemic. Heliyon. 2022;8(9):e10757. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9509534/. doi: 10.1016/j.heliyon.2022.
  • Wang Q, Zhang M, Li R. The COVID-19 pandemic reshapes the plastic pollution research – a comparative analysis of plastic pollution research before and during the pandemic. Environ Res. 2022;208:112634. doi: 10.1016/j.envres.2021.112634.
  • Miller RC, Tsai CJ. Scholarly publishing in the wake of COVID-19. Int J Radiat Oncol Biol Phys. 2020;108(2):491–495. doi: 10.1016/j.ijrobp.2020.06.048.
  • China overtakes US in scientific research output[EB]//MCLC Resource Center. 2022. https://u.osu.edu/mclc/2022/08/11/china-overtakes-us-in-scientific-research-output/.
  • Volbeda M, Jou-Valencia D, Van Den Heuvel MC, et al. Acute and chronic histopathological findings in renal biopsies in COVID-19. Clin Exp Med. 2022;23(4):1003–1014. doi: 10.1007/s10238-022-00941-x.
  • Qi Z, Yuan S, Wei J, et al. Clinical and pathological features of omicron variant of SARS-CoV-2-associated kidney injury. J Med Virol. 2023;95(10):e29196. doi: 10.1002/jmv.29196.
  • Pantazis N, Pechlivanidou E, Antoniadou A, et al. Remdesivir: effectiveness and safety in hospitalized patients with COVID-19 (ReEs-COVID-19)-analysis of data from daily practice. Microorganisms. 2023;11(8):1998. doi: 10.3390/microorganisms11081998.
  • Wang Y, Yang L, Xu G. New-onset acute interstitial nephritis post-SARS-CoV-2 infection and COVID-19 vaccination: a panoramic review. J Epidemiol Glob Health. 2023;13(4):615–636. doi: 10.1007/s44197-023-00159-4.
  • Y S, D K, K H, et al. Renal biopsy diagnosis of acute tubular injury after Pfizer-BioNTech COVID-19 vaccination: a case report. Vaccines. 2023;11(2):464. https://pubmed.ncbi.nlm.nih.gov/36851341/. doi: 10.3390/vaccines11020464.
  • Li Y, Gong Y, Xu G. New insights into kidney disease after COVID-19 infection and vaccination: histopathological and clinical findings. QJM. 2023:hcad159. doi: 10.1093/qjmed/hcad159.
  • Su L, Zhang J, Peng Z. The role of kidney injury biomarkers in COVID-19. Ren Fail. 2022;44(1):1280–1288. doi: 10/gq73hz.
  • Weiss R, Von Groote T, Ostermann M, et al. The role of cell cycle arrest biomarkers for predicting acute kidney injury in critically ill COVID-19 patients: a multicenter, observational study. Crit Care Med. 2023;51(8):992–1000. doi: 10.1097/CCM.0000000000005853.
  • Głowacka M, Lipka S, Młynarska E, et al. Acute kidney injury in COVID-19. Int J Mol Sci. 2021;22(15):8081. doi: 10/gq73h5.
  • Chan L, Chaudhary K, Saha A, et al. AKI in hospitalized patients with COVID-19. J Am Soc Nephrol. 2021;32(1):151–160. doi: 10/ghvb7m.
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8. doi: 10/ggnq74.
  • Pan XW, Xu D, Zhang H, et al. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Intensive Care Med. 2020;46(6):1114–1116. doi: 10/ggq72d.
  • Diao B, Wang C, Wang R, et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection. Nat Commun. 2021;12(1):2506. doi: 10/gkcz2x.
  • R F, A B, Jd J, et al. Presence of SARS-CoV-2 in urine is rare and not associated with acute kidney injury in critically ill COVID-19 patients. Critical Care (London, England). 2020;24(1):587. https://pubmed.ncbi.nlm.nih.gov/32993742/. doi: 10.1186/s13054-020-03302-w.
  • Sharma P, Uppal NN, Wanchoo R, et al. COVID-19–associated kidney injury: a case series of kidney biopsy findings. J Am Soc Nephrol. 2020;31(9):1948–1958. doi: 10/gq73mb.
  • May RM, Cassol C, Hannoudi A, et al. A multi-center retrospective cohort study defines the spectrum of kidney pathology in coronavirus 2019 disease (COVID-19). Kidney Int. 2021;100(6):1303–1315. doi: 10/gmgnsm.
  • Santoriello D, Khairallah P, Bomback AS, et al. Postmortem kidney pathology findings in patients with COVID-19. J Am Soc Nephrol. 2020;31(9):2158–2167. doi: 10.1681/ASN.2020050744.
  • Goldsmith CS, Miller SE, Martines RB, et al. Electron microscopy of SARS-CoV-2: a challenging task. Lancet. 2020;395(10238):e99. doi: 10.1016/S0140-6736(20)31188-0.
  • Li X, Geng M, Peng Y, et al. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102–108. doi: 10/ggppqg.
  • Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Inf Dis. 2020;71(15):762–768. doi: 10/ggpxcf.
  • Fadila MF, Wool KJ. Rhabdomyolysis secondary to influenza a infection: a case report and review of the literature. N Am J Med Sci. 2015;7(3):122–124. doi: 10.4103/1947-2714.153926.
  • Suwanwongse K, Shabarek N. Rhabdomyolysis as a presentation of 2019 novel coronavirus disease. Cureus. 2022;12(4):e7561. doi: 10/ggq9zh.
  • Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol. 2020;16(6):308–310. doi: 10/ggr2r7.
  • Panitchote A, Mehkri O, Hastings A, et al. Factors associated with acute kidney injury in acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):74. doi: 10.1186/s13613-019-0552-5.
  • Fanelli V, Fiorentino M, Cantaluppi V, et al. Acute kidney injury in SARS-CoV-2 infected patients. Crit Care. 2020;24(1):155. doi: 10.1186/s13054-020-02872-z.