566
Views
0
CrossRef citations to date
0
Altmetric
Acute Kidney Injury

Exploring therapeutic mechanisms of Chuan Huang Fang-II in the treatment of acute kidney injury on chronic kidney disease patients from the perspective of lipidomics

, , , , , & ORCID Icon show all
Article: 2356021 | Received 19 Sep 2023, Accepted 12 May 2024, Published online: 24 May 2024

7. References

  • Laing C. Database research in acute kidney injury: time to take stock?. Am J Kidney Dis. 2022;79(4):1–18. doi: 10.1053/j.ajkd.2021.09.028.
  • August P. Chronic kidney Disease - Another step forward. N Engl J Med. 2023;388(2):179–180. doi: 10.1056/NEJMe2215286.
  • He L, Wei Q, Liu J, et al. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms Kidney Int. 2017;92(5):1071–1083. doi: 10.1016/j.kint.2017.06.030.
  • Chen L, Gong X. Efficacy and safety of chuan huang fang combining reduced glutathione in treating acute kidney injury (grades 1-2) on chronic kidney disease (stages 2-4): study protocol for a multicenter randomized controlled clinical trial. Evid Based Complement Alternat Med. 2022;2022:1099642. doi: 10.1155/2022/1099642.
  • Chen L, Ye Z, Wang D, et al. Chuan huang fang combining reduced glutathione in treating acute kidney injury (grades 1-2) on chronic kidney disease (stages 2-4): a multicenter randomized controlled clinical trial. Front Pharmacol. 2022;13:969107. doi: 10.3389/fphar.2022.969107.
  • Gong X, Tang X, Wang Q, et al. Observe the clinical efficacy of chuanhuang decoction combined with lipo PGE1 in treating acute kidney injury (AKI) on phase 2 ∼ 4 chronic kidney disease (CKD) patients. Chin J IntegrTrad West Med Nephrol. 2014;15(9):784–787.
  • Gong X, Duan Y, Wang Y, et al. Effects of chuanhuang decoction on renal function and oxidative stress in patients of chronic kidney disease at stage 2-4 complicated with acute kidney injury. J Shanghai Univ Trad Chin Med Sci. 2020;34(1):11–16. doi: 10.16306/j.1008-861x.2020.01.002.
  • Gong X, Ye Z, Xu X, et al. Effects of chuanhuang formula combined with prostaglandin E1 in treating patients of chronic kidney disease complicated with acute kidney injury and its influence on NLRP3 J Shanghai Univ Trad Chin Med Sci. 2021;35(06):12–16. doi: 10.16306/j.1008-861x.2021.06.002.
  • Wang WM, Wu Y. Clinical effect of reduced glutathione combined with jinshuibao in the treatment of acute renal injury. Guide China Med, 2021, 19 (24), 7–9.
  • Zhang L, Bai L. Therapeutic effect of reduced glutathione on acute kidney injury in patients with sepsis[J]. Chin Mode Med. 2019;26(9):54–60.
  • Kim DH, Choi HI, Park JS, et al. Farnesoid X receptor protects against cisplatin-induced acute kidney injury by regulating the transcription of ferroptosis-related genes. Redox Biol. 2022;54:102382. doi: 10.1016/j.redox.2022.102382.
  • Yang F, Tong J, Li H, et al. Effects of reduced glutathione combined with high-flux hemodialysis on serum CysC, KIM-1 and scr in patients with acute kidney injury. . Med J West China. 2020;32(6):863–867.
  • Hu DJ. Reduced glutathione with high flux hemodialysis therapy of acute renal injury in clinical study. . J Clin Nephrol. 2015;15(1):39–41.
  • Ostermann M, Bellomo R, Burdmann EA, et al. Controversies in acute kidney injury: conclusions from a kidney disease: improving global outcomes (KDIGO) conference. Kidney Int. 2020;98(2):294–309. doi: 10.1016/j.kint.2020.04.020.
  • Kochan Z, Szupryczynska N, Malgorzewicz S, et al. Dietary lipids and dyslipidemia in chronic kidney disease. Nutrients. 2021;13(9):3138. doi: 10.3390/nu13093138.
  • Theofilis P, Vordoni A, Koukoulaki M, et al. Dyslipidemia in chronic kidney disease: contemporary concepts and future therapeutic perspectives. Am J Nephrol. 2021;52(9):693–701. doi: 10.1159/000518456.
  • Cao Y, Li H, Sun Y, et al. Integration of multi-omics in investigations on the mechanisms of action of Chinese herbal medicine interventions in metabolic diseases. Tradit Med Res. 2022;7(4):31. doi: 10.53388/TMR20220117001.
  • Acosta-Ochoa I, Bustamante-Munguira J, Mendiluce-Herrero A, et al. Impact on outcomes across KDIGO-2012 AKI criteria according to baseline renal function. J Clin Med. 2019;8(9):1323. doi: 10.3390/jcm8091323.
  • Soliman KM, Campbell RC, Fülöp T, et al. Acute kidney injury in subjects with chronic kidney disease undergoing total joint arthroplasty. Am J Med Sci. 2019;358(1):45–50. doi: 10.1016/j.amjms.2019.04.002.
  • Aklilu AM, Kumar S, Nugent J, et al. COVID-19-associated acute kidney injury and longitudinal kidney outcomes. JAMA Intern Med. 2024;184(4):414–423. doi: 10.1001/jamainternmed.2023.8225.
  • Ng PY, Ip A, Ng AK, et al. Risk of acute kidney injury in critically-ill patients with COVID-19 compared with seasonal influenza: a retrospective cohort study. EClinl Med. 2024;70:102535. doi: 10.1016/j.eclinm.2024.102535.
  • Li Y, Gong Y, Xu G. New insights into kidney disease ­after COVID-19 infection and vaccination: histopathological and clinical findings. QJM. 2023:1–21. doi: 10.1093/qjmed/hcad159.
  • Zarbock A, Forni LG, Ostermann M, et al. Designing acute kidney injury clinical trials. Nat Rev Nephrol. 2024;20(2):137–146. doi: 10.1038/s41581-023-00758-1.
  • Klein SJ, Brandtner AK, Lehner GF, et al. Biomarkers for prediction of renal replacement therapy in acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 2018;44(3):323–336. doi: 10.1007/s00134-018-5126-8.
  • Molinari L, Del Rio-Pertuz G, Smith A, et al. Utility of biomarkers for sepsis-associated acute kidney injury staging. JAMA Netw Open. 2022;5(5):e2212709. doi: 10.1001/jamanetworkopen.2022.12709.
  • Ix JH, Shlipak MG. The promise of tubule biomarkers in kidney disease: a review. Am J Kidney Dis. 2021;78(5):719–727. doi: 10.1053/j.ajkd.2021.03.026.
  • Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 2019;394(10212):1949–1964. doi: 10.1016/s0140-6736(19)32563-2.
  • Merchant ML, Brier ME, Slaughter MS, et al. Biomarker enhanced risk prediction for development of AKI after cardiac surgery. BMC Nephrol. 2018;19(1):102. doi: 10.1186/s12882-018-0902-9.
  • Wen Y, Parikh CR. Current concepts and advances in biomarkers of acute kidney injury. Crit Rev Clin Lab Sci. 2021;58(5):354–368. doi: 10.1080/10408363.2021.1879000.
  • Ho J, Tangri N, Komenda P, et al. Urinary, plasma, and serum biomarkers’ utility for predicting acute kidney ­injury associated with cardiac surgery in adults: a meta-analysis. Am J Kidney Dis. 2015;66(6):993–1005. doi: 10.1053/j.ajkd.2015.06.018.
  • Endre ZH. Using biomarkers for acute kidney injury: barriers and solutions. Nephron Clin Pract. 2014;127(1–4):180–184. doi: 10.1159/000363555.
  • Adler C, Heller T, Schregel F, et al. TIMP-2/IGFBP7 predicts acute kidney injury in out-of-hospital cardiac arrest survivors[J]. Crit Care. 2018;22(1):126. doi: 10.1186/s13054-018-2042-9.
  • Sailon AM, Wasserburg JR, Kling RR, et al. Influence of large-Volume liposuction on metabolic and cardiovascular health: a systematic review. Ann Plast Surg. 2017;79(6):623–630. doi: 10.1097/sap.0000000000001195.
  • Nasiri-Ansari N, Nikolopoulou C, Papoutsi K, et al. Empagliflozin attenuates non-Alcoholic fatty liver disease (NAFLD) in high fat diet fed ApoE((-/-)) mice by activating autophagy and reducing ER stress and apoptosis. Int J Mol Sci. 2021;22(2):818. doi: 10.3390/ijms22020818.
  • Wang G, Wu B, Zhang L, et al. The protective effects of trelagliptin on high-fat diet-induced nonalcoholic fatty liver disease in mice. J Biochem Mol Toxicol. 2021;35(4):e22696. doi: 10.1002/jbt.22696.
  • Wang J, Zhang F, Hu L, et al. Correlation of acute kidney injury with serum uric acid and lipid profiles levels. . Chin J Health Lab Tec. 2017;27(03):377–379.
  • Smith LE. High-Density lipoproteins and acute kidney injury. Semin Nephrol. 2020;40(2):232–242. doi: 10.1016/j.semnephrol.2020.01.013.
  • Wei M, Zhang Z, Ma Z, et al. Ratios of neutrophil, lymphocyte, and monocyte to high-density lipoprotein cholesterol in acute pancreatitis complicated with acute kidney injury. J Clin Nephrol. 2021;21(1):1–9. doi: 10.3969/j.issn.1671-2390.m20-147.
  • Smith LE, Smith DK, Yancey PG, et al. Perioperative high density lipoproteins, oxidative stress, and kidney injury after cardiac surgery. J Lipid Res. 2021;62:100024. doi: 10.1016/j.jlr.2021.100024.
  • Zhou Y, Yang HY, Zhang HL, et al. High-density lipoprotein cholesterol concentration and acute kidney injury after noncardiac surgery. BMC Nephrol. 2020;21(1):149. doi: 10.1186/s12882-020-01808-7.
  • Yang K, Chen J, Liu L, et al. Analysis of the incidence and influencing factors of acute contrast induced renal injury after emergency PCI. J Clin Emer. 2021;22(06):390–394. doi: 10.13201/j.issn.1009-5918.2021.06.005.
  • Hao Y, Pan Y, Gao H, et al. Comparison of the value of preoperative serum LP(a) and LDL-C levels in predicting short-term adverse prognosis in patients with acute coronary syndrome after PCI. J Clin Cardio. 2020;36(12):1115–1119. doi: 10.13201/j.issn.1001-1439.2020.12.010.
  • Baek J, He C, Afshinnia F, et al. Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease. Nat Rev Nephrol. 2022;18(1):38–55. doi: 10.1038/s41581-021-00488-2.
  • Cui H, Yang L, Li Y, et al. Omics technology: an important tool in mechanism studies of Chinese herbal formulas. Tradit Med Res. 2021;6(1):2. doi: 10.53388/TMR20200920199.
  • Rao S, Walters KB, Wilson L, et al. Early lipid changes in acute kidney injury using SWATH lipidomics coupled with MALDI tissue imaging. Am J Physiol Renal Physiol. 2016;310(10):F1136–47. doi: 10.1152/ajprenal.00100.2016.
  • Stasi A, Intini A, Divella C, et al. Emerging role of lipopolysaccharide binding protein in sepsis-induced acute kidney injury. Nephrol Dial Transplant. 2017;32(1):24–31. doi: 10.1093/ndt/gfw250.
  • Wang S, Xiao C, Liu C, et al. Identification of biomarkers of sepsis-associated acute kidney injury in pediatric ­patients based on UPLC-QTOF/MS. Inflammation. 2020;43(2):629–640. doi: 10.1007/s10753-019-01144-5.
  • Wang YN, Hu HH, Zhang DD, et al. The dysregulation of eicosanoids and bile acids correlates with impaired kidney function and renal fibrosis in chronic renal failure. Metabolites. 2021;11(2):127. doi: 10.3390/metabo11020127.
  • Ren JL, Dong H, Han Y, et al. Network pharmacology combined with metabolomics approach to investigate the protective role and detoxification mechanism of Yunnan baiyao formulation. Phytomedicine. 2020;77:153266. doi: 10.1016/j.phymed.2020.153266.
  • Dou F, Miao H, Wang JW, et al. An integrated lipidomics and phenotype study reveals protective effect and biochemical mechanism of traditionally used alisma orientale juzepzuk in chronic kidney disease. Front Pharmacol. 2018;9:53. doi: 10.3389/fphar.2018.00053.
  • Gong X, Zheng J, Duan Y, et al. Effect of Chuanhuang fang on apoptosis of renal tubular epithelial cells in rats with trivalent arsenic nephrotoxicity. Beijing Med J. 2019;41:1089–1093. doi: 10.15932/j.0253-9713.2019.12.009.
  • Gong X, Wang Q, Fu D, et al. Research on radix et Rhizoma Rhei-Rhizoma Ligustici Chuanxiong restraining renal tubular epithelial cell apoptosis in contrast-induced nephropathy rats. . Shanghai J Trad Chin Med. 2013;47(03):69–71. doi: 10.16305/j.1007-1334.2013.03.023.
  • Gong X, Qiu A, Duan Y, et al. Effects of couplet medicines of prepared radix et rhizoma Rhei-Rhizoma ligustici chuanxiong on Nrf2/HO-1 signaling pathway in renal ­tissue of contrast induced nephropathy rats. J Shanghai Univ Trad Chin Med Sci. 2017;31(06):58–61. doi: 10.16306/j.1008-861x.2017.06.014.
  • Chen L, Gong X. Drug-induced acute kidney injury: epidemiology, mechanisms, risk factors, and preventive treatment of traditional Chinese medicine. Integr Med Nephrol Androl. 2022;9(1):5. doi: 10.4103/2773-0387.345767.
  • Li J, Gong X. Tetramethylpyrazine: an active ingredient of Chinese herbal medicine with therapeutic potential in acute kidney injury and renal fibrosis. Front Pharmacol. 2022;13:820071. doi: 10.3389/fphar.2022.820071.
  • Li J, Gong X. Bibliometric and visualization analysis of kidney repair associated with acute kidney injury from 2002 to 2022. Front Pharmacol. 2023;14:1101036. doi: 10.3389/fphar.2023.1101036.