610
Views
0
CrossRef citations to date
0
Altmetric
Chronic Kidney Disease and Progression

Bioinformatic analyses reveal lysosomal-associated protein transmembrane 5 as a potential therapeutic target in lipotoxicity-induced injury in diabetic kidney disease

, , , , &
Article: 2359638 | Received 23 Feb 2024, Accepted 20 May 2024, Published online: 04 Jun 2024

References

  • Ruiz-Ortega M, et al. Special issue: diabetic kidney disease: diagnosis, prevention and treatment. J Clin Med. 2020;9(3):813. doi: 10.3390/jcm9030813.
  • Gupta S, Dominguez M, Golestaneh L. Diabetic kidney disease: an update. Med Clin North Am. 2023;107(4):1–12. doi: 10.1016/j.mcna.2023.03.004.
  • Sever B, Altıntop MD, Demir Y, et al. An extensive research on aldose reductase inhibitory effects of new 4H-1,2,4-triazole derivatives. J Mol Struct. 2021;1224:129446. doi: 10.1016/j.molstruc.2020.129446.
  • Sever B, et al. Identification of a new class of potent aldose reductase inhibitors: design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines. Chem Biol Interact. 2021;345:109576.
  • Demir Y, Köksal Z. Some sulfonamides as aldose reductase inhibitors: therapeutic approach in diabetes. Arch Physiol Biochem. 2022;128(4):979–984.
  • Akdağ M, Özçelik AB, Demir Y, et al. Design, synthesis, and aldose reductase inhibitory effect of some novel carboxylic acid derivatives bearing 2-substituted-6-aryloxo-pyridazinone moiety. J Mol Struct. 2022;1258:132675. doi: 10.1016/j.molstruc.2022.132675.
  • Liu BC, et al. Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int. 2018;93(3):568–579.
  • Tsai Y-C, Kuo M-C, Hung W-W, et al. Proximal tubule-derived exosomes contribute to mesangial cell injury in diabetic kidney disease via miR-92a-1-5p transfer. Cell Commun Signal. 2023;21(1):10. doi: 10.1186/s12964-022-00997-y.
  • Chen SJ, et al. Crosstalk between tubular epithelial cells and glomerular endothelial cells in diabetic kidney disease. Cell Prolif. 2020;53(3):e12763.
  • Zhi D, Zhang M, Lin J, et al. GPR120 ameliorates apoptosis and inhibits the production of inflammatory cytokines in renal tubular epithelial cells. Inflammation. 2021;44(2):493–505. doi: 10.1007/s10753-020-01346-2.
  • Opazo-Ríos L, et al. Lipotoxicity and diabetic kidney disease: novel mechanistic insights and therapeutic opportunities. Int J Mol Sci. 2020;21(7):2632. doi: 10.3390/ijms21072632.
  • Palabıyık E, et al. Assessment of hypolipidemic and anti-inflammatory properties of walnut (Juglans regia) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-induced hyperlipidemia in rat kidney, liver, and heart. J Mol Recognit. 2023;36(3):e3004.
  • Sulumer AN, Palabıyık E, Avcı B, et al. Protective effect of bromelain on some metabolic enzyme activities in tyloxapol-induced hyperlipidemic rats. Biotechnol Appl Biochem. 2024;71(1):17–27.
  • Eleftheriadis T, Pissas G, Tsogka K, et al. A unifying model of glucotoxicity in human renal proximal tubular epithelial cells and the effect of the SGLT2 inhibitor dapagliflozin. Int Urol Nephrol. 2020;52(6):1179–1189. doi: 10.1007/s11255-020-02481-3.
  • Zhao X, Liu G, Shen H, et al. Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells. Int J Mol Med. 2015;35(3):684–692. doi: 10.3892/ijmm.2014.2052.
  • Eleftheriadis T, et al. Dapagliflozin prevents high-glucose-induced cellular senescence in renal tubular epithelial cells. Int J Mol Sci. 2022;23(24):16107. doi: 10.3390/ijms232416107.
  • Kim YJ, Kim YA, Yokozawa T. Attenuation of oxidative stress and inflammation by gravinol in high glucose-exposed renal tubular epithelial cells. Toxicology. 2010;270(2-3):106–111. doi: 10.1016/j.tox.2010.02.001.
  • Weinberg JM. Lipotoxicity. Kidney Int. 2006;70(9):1560–1566. doi: 10.1038/sj.ki.5001834.
  • Ruggiero C, Elks CM, Kruger C, et al. Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis. Am J Physiol Renal Physiol. 2014;306(8):F896–906. doi: 10.1152/ajprenal.00484.2013.
  • Jiang L, Zhao J, Yang Q, et al. Lysosomal-associated protein transmembrane 5 ameliorates non-alcoholic steatohepatitis by promoting the degradation of CDC42 in mice. Nat Commun. 2023;14(1):2654. doi: 10.1038/s41467-023-37908-9.
  • Zhang Z, Wang L, Wang Z, et al. Lysosomal-associated transmembrane protein 5 deficiency exacerbates cerebral ischemia/reperfusion injury. Front Mol Neurosci. 2022;15:971361. doi: 10.3389/fnmol.2022.971361.
  • Guo M, Dai Y, Jiang L, et al. Bioinformatics analysis of the mechanisms of diabetic kidney disease via novel biomarkers and competing endogenous RNA network. Front Endocrinol (Lausanne). 2022;13:934022. doi: 10.3389/fendo.2022.934022.
  • Song Z, et al. Suppression of lysosomal-associated protein transmembrane 5 ameliorates cardiac function and inflammatory response by inhibiting the nuclear factor-kappa B (NF-κB) pathway after myocardial infarction in mice. Exp Anim. 2022;71(4):415–425.
  • Li T, Wang W, Gan W, et al. Comprehensive bioinformatics analysis identifies LAPTM5 as a potential blood biomarker for hypertensive patients with left ventricular hypertrophy. Aging (Albany NY). 2022;14(3):1508–1528. doi: 10.18632/aging.203894.
  • Zahid Kocak M, Aktas G, Erkus E, et al. Mean platelet volume to lymphocyte ratio as a novel marker for diabetic kidney disease. J Coll Physicians Surg Pak. 2018;28(11):844–847. doi: 10.29271/jcpsp.2018.11.844.
  • Bilgin S, et al. Does C-reactive protein to serum albumin ratio correlate with diabetic kidney disease in patients with type 2 dIabetes MEllitus? The CARE TIME study. Prim Care Diabetes. 2021;15(6):1071–1074.
  • Kin Tekce B, et al. Evaluation of the urinary kidney injury molecule-1 levels in patients with diabetic kidney disease. Clin Invest Med. 2014;37(6):E377–83.
  • Tekce H, Tekce BK, Aktas G, et al. Serum omentin-1 levels in diabetic and nondiabetic patients with chronic kidney disease. Exp Clin Endocrinol Diabet. 2014;122(8):451–456. doi: 10.1055/s-0034-1375674.
  • Kocak MZ, et al. Is uric acid elevation a random finding or a causative agent of diabetic kidney disease? Rev Assoc Med Bras. 1992; 2019. 65(9):1155–1160.
  • Kocak MZ, Aktas G, Duman TT, et al. Monocyte lymphocyte ratio as a predictor of diabetic kidney injury in type 2 diabetes mellitus; the MADKID study. J Diabetes Metab Disord. 2020;19(2):997–1002. doi: 10.1007/s40200-020-00595-0.
  • Aktas G. Association between the prognostic nutritional index and chronic microvascular complications in patients with type 2 diabetes mellitus. J Clin Med. 2023;12(18):5952. doi: 10.3390/jcm12185952.
  • Taslamacioglu Duman T, Ozkul FN, Balci B. Could systemic inflammatory index predict diabetic kidney injury in type 2 diabetes mellitus? Diagnostics (Basel). 2023;13(12):2063. doi: 10.3390/diagnostics13122063.
  • Kocak MZ, et al. Is neuregulin-4 a predictive marker of microvascular complications in type 2 diabetes mellitus? Eur J Clin Invest. 2020;50(3):e13206.
  • Aktas G, Yilmaz S, Kantarci DB, et al. Is serum uric acid-to-HDL cholesterol ratio elevation associated with diabetic kidney injury? Postgrad Med. 2023;135(5):519–523. doi: 10.1080/00325481.2023.2214058.
  • Friedrich M, Aigner A. Therapeutic siRNA: state-of-the-art and future perspectives. BioDrugs. 2022;36(5):549–571. doi: 10.1007/s40259-022-00549-3.
  • Kang HM, Ahn SH, Choi P, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 2015;21(1):37–46. doi: 10.1038/nm.3762.
  • Zhou L-T, Lv L-L, Qiu S, et al. Bioinformatics-based discovery of the urinary BBOX1 mRNA as a potential biomarker of diabetic kidney disease. J Transl Med. 2019;17(1):59. doi: 10.1186/s12967-019-1818-2.
  • Zhao J, He K, Du H, et al. Bioinformatics prediction and experimental verification of key biomarkers for diabetic kidney disease based on transcriptome sequencing in mice. PeerJ. 2022;10:e13932. doi: 10.7717/peerj.13932.
  • Bai Y, Ma L, Deng D, et al. Bioinformatic identification of genes involved in diabetic kidney disease fibrosis and their clinical relevance. Biochem Genet. 2023;61(4):1567–1584. doi: 10.1007/s10528-023-10336-6.
  • Herman-Edelstein M, Scherzer P, Tobar A, et al. Altered renal lipid metabolism and renal lipid accumulation in human diabetic kidney disease. J Lipid Res. 2014;55(3):561–572.
  • Bobulescu IA. Renal lipid metabolism and lipotoxicity. Curr Opin Nephrol Hypertens. 2010;19(4):393–402.
  • Mitrofanova A, et al. New insights into renal lipid dysmetabolism in diabetic kidney disease. World J Diabetes. 2021;12(5):524–540.
  • Mitrofanova A, Merscher S, Fornoni A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease. Nat Rev Nephrol. 2023;19(10):629–645. doi: 10.1038/s41581-023-00741-w.
  • Kim JJ, Wilbon SS, Fornoni A. Podocyte lipotoxicity in CKD. Kidney. 2021;360(2(4):755–762.
  • Hua W, Huang H-Z, Tan L-T, et al. CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress. PLoS One. 2015;10(5):e0127507. doi: 10.1371/journal.pone.0127507.
  • Zhao J, Rui H-L, Yang M, et al. CD36-mediated lipid accumulation and activation of NLRP3 inflammasome lead to podocyte injury in obesity-related glomerulopathy. Mediators Inflamm. 2019;2019:8247280. doi: 10.1155/2019/8247280.
  • Wang XX, et al. The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria. Am J Physiol Renal Physiol. 2009;297(6):F1587–96.
  • Hou Y, Tan E, Shi H, et al. Mitochondrial oxidative damage reprograms lipid metabolism of renal tubular epithelial cells in the diabetic kidney. Cell Mol Life Sci. 2024;81(1):23. doi: 10.1007/s00018-023-05078-y.
  • Yan K, Zhang P, Jin J, et al. Integrative analyses of hub genes and their association with immune infiltration in adipose tissue, liver tissue and skeletal muscle of obese patients after bariatric surgery. Adipocyte. 2022;11(1):190–201. doi: 10.1080/21623945.2022.2060059.
  • Pan J, Zhang M, Dong L, et al. Genome-Scale CRISPR screen identifies LAPTM5 driving lenvatinib resistance in hepatocellular carcinoma. Autophagy. 2023;19(4):1184–1198. doi: 10.1080/15548627.2022.2117893.
  • Yang X, et al. LCDR regulates the integrity of lysosomal membrane by hnRNP K-stabilized LAPTM5 transcript and promotes cell survival. Proc Natl Acad Sci U S A. 2022;119(5):e2110428119. doi: 10.1073/pnas.2110428119.
  • Wang Y, et al. LAPTM5 mediates immature B cell apoptosis and B cell tolerance by regulating the WWP2-PTEN-AKT pathway. Proc Natl Acad Sci U S A. 2022;119(36):e2205629119.
  • Glowacka WK, et al. LAPTM5 protein is a positive regulator of proinflammatory signaling pathways in macrophages. J Biol Chem. 2012;287(33):27691–27702.