828
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Metabolic Fluxes in Lactic Acid Bacteria—A Review

, , &

REFERENCES

  • Abdel-Rahmana, M., Tashiro, Y., Sonomoto, K. (2011). Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J. Biotechnol. 156:286–301.
  • Adamberg, K., Adamberg, S., Laht, T., Ardö, Y., Paalme, T. (2006). Study of cheese associated lactic acid bacteria under carbohydrate-limited conditions using D-stat cultivation. Food Biotechnol. 20:143–160.
  • Agrawal, R. (2005). Probiotics: an emerging food supplement with health benefits. Food Biotechnol. 19:227–246.
  • Akyol, I., Serdaroglu, K., Gezginc, Y., Sinan Dayisoylu, K., Sait Ekinci, M., Ozkose, E. (2009). Redirection of pyruvate pathway of lactic acid bacteria to improve cheese quality. Food Biotechnol. 23:200–213.
  • Andersen, H., Pedersen, M., Hammer, K., Jensen, P. (2001). Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis. Eur. J. Biochem. 268:6379–6389.
  • Antoniewicz, M. (2013). 13C metabolic flux analysis: optimal design of isotopic labeling experiments. Curr. Opin. Biotechnol. 24:1116–1121.
  • Antoniewicz, M.R., Kelleher, J.K., Stephanopoulos, G. (2007). Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab. Eng. 9:68–86.
  • Bai, D., Zhao, X., Li, X., Xu, S. (2004). Strain improvement and metabolic flux analysis in the wild-type and a mutant Lactobacillus lactis strain for L(+)-lactic acid production. Biotechnol. Bioeng. 88:681–689.
  • Bailey, J. (1991). Toward a science of metabolic engineering. Science 252:1668–1675.
  • Bhatt, S., Srivastava, S. (2008). Lactic acid production from cane molasses by Lactobacillus delbrueckii NCIM 2025 in submerged condition: optimization of medium component by Taguchi DOE methodology. Food Biotechnol. 22:115–139.
  • Becker, S.A., Feist, A.M., Mo, M.L., Hannum, G., Palsson, B.Ø., Herrgard, M.J. (2007). Quantitative prediction of cellular metabolism with constraint based models: the COBRA toolbox. Nature Prot. 2:727–738.
  • Berezina, O., Zakharova, N., Brandt, A., Yarotsky, S., Schwarz, W., Zverlov, V. (2010). Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl. Microbiol. Biotechnol. 87:635–646.
  • Bermúdez-Humarán, L., Aubry, C., Motta, J., Deraison, C., Steidler, L., Vergnolle, N., Chatel, J., Langella, P. (2013). Engineering lactococci and lactobacilli for human health. Curr. Opin. Microbiol. 16:278–283.
  • Beste, D.J., Hooper, T., Stewart, G., Bonde, B., Avignone-Rossa, C., Bushell, M.E., Wheeler, P., Klamt, S., Kierzek, A.M., McFadden, J. (2007). GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol. 8:R89.
  • Boele, J., Olivier, B.G., Teusink, B. (2012). FAME, the flux analysis and modeling environment. BMC Systems Biology. 6:8.
  • Boghigian, B., Seth, G., Kiss, R., Pfeifer, B. (2010). Metabolic flux analysis and pharmaceutical production. Metab. Eng. 12:81–95.
  • Bolotin, A., Quinquis, B., Renault, P., Sorokin, A., Dusko Ehrlich, S., Kulakauskas, S., Lapidus, A., Goltsman, E., Mazur, M., Pusch, G., Fonstein, M., Overbeek, R., Kyprides, N., Purnelle, B., Prozzi, D., Ngui, K., Masuy, D., Hancy, F., Burteau, S., Boutry, M., Delcour, J., Goffeau, A., Hols, P. (2004). Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat. Biotechnol. 22:1554–1558.
  • Branco dos Santos, F., de Vos, W., Teusink, B. (2013). Towards metagenome-scale models for industrial applications—the case of lactic acid bacteria. Curr. Opin. Biotechnol. 24:200–206.
  • Bron, P., Kleerebezem, M. (2011). Engineering lactic acid bacteria for increased industrial functionality. Bioeng. Bugs 2:2, 80–87.
  • Burguess, C., Smid, E., van Sinderen, D. (2009). Bacterial vitamin B2, B11 and B12 overproduction: an overview. Int. J. Food Microbiol. 133:1–7.
  • Capozzi, V., Russo, P., Dueñas, M., López, P., Spano, G. (2012). Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products. Appl. Microbiol. Biotechnol. 96:1383–1394.
  • Castillo, F., Balciunas, E., Salgado, J., Domınguez, J., Converti, A., Pinheiro de Souza, R. (2013). Lactic acid properties, applications and production: a review. Trends in Food Sci. & Tech. 30:70–83.
  • Cheng, H., Whang, L., Lin, C., Liu, I., Wu, C. (2013). Metabolic flux network analysis of fermentative hydrogen production using Clostridium tyrobutyricum as an example. Biores. Tech. 141:233–239.
  • Chiewchankaset, P., Srimarut, Y., Klanchui, A., Kurdi, P., Plengvidhya, V., Meechai, A. (2012). Systematic identification of Lactobacillus plantarum auxotrophs for fermented Nham using genome-scale metabolic model. J. Biotechnol. 162:327–335.
  • Curic, M., de Richelieu, M., Henriksen, C. (1999). Glucose/citrate cometabolism in Lactococcus lactis subsp. lactis biovar diacetylactis with impaired α-acetolactate decarboxylase. Metab. Eng. 1:291–298.
  • De Boeck, R., Sarmiento-Rubiano, L., Nadal, I., Monedero, V., Pérez-Martínez, G., Yebra, M. (2010). Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase. Appl. Microbiol. Biotechnol. 85:1915–1922.
  • de Vos, W., Hugenholtz, J. (2004). Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends Biotechnol. 22:72–79.
  • de Vos, W. (2011). Systems solutions by lactic acid bacteria: from paradigms to practice. Microbial. Cell Factories 10(Suppl. 1):S2.
  • Feng, X., Xu, Y., Chen, Y., Tang, Y. (2012). MicrobesFlux: a web platform for drafting metabolic models from the KEGG database. BMC Syst. Biol. 6:94.
  • Flahaut, N., Wiersma, A., van de Bunt, B., Martens, D., Schaap, P., Sijtsma, L., dos Santos, V., de Vos, W. (2013). Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation. Appl. Microbiol. Biotechnol. 97:8729–8739.
  • Gänzle, M., Follador, R. (2012). Metabolism of oligosaccharides and starch in lactobacilli: a review. Front Microbiol. 3:340.
  • Gaspar, P., Carvalho, A., Vinga, S., Santos, H., Neves, A. (2013). From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol. Adv. 31:764–788.
  • González-Rodríguez, I., Gaspar, P., Sánchez, B., Gueimonde, M., Margolles, A., & Neves, A.R. (2013). Catabolism of glucose and lactose in bifidobacterium animalis subsp. lactis, studied by 13C nuclear magnetic resonance. App. & Environ. Microbiol. 79:7628–7638.
  • Goupry, S., Croguennec, T., Gentil, E., Robins, R. (2000). Metabolic flux in glucose/citrate co-fermentation by lactic acid bacteria as measured by isotopic ratio analysis. FEMS Microbiol. Lett. 182:207–211.
  • Grafahrend-Belau, E., Klukas, C., Junker, B.H., Schreiber, F. (2009). FBA-SimVis: interactive visualization of constraint-based metabolic models. Bioinform. 25:2755–2757.
  • Hati, S., Vij, S., Mandal, S., Malik, R., Kumari, V., Khetra, Y. (2014). α-galactosidase activity and oligosaccharides utilization by Lactobacilly during fermentation of soy milk. J. Food Process. & Preserv. 38:1065–1071.
  • Heinrich, R., Rapoport, T. (1974). A linear steady-state treatment of enzyme chains. Eur. J. Biochem. 42:89–95.
  • Hoefnagel, M., Starrenburg, M., Martens, D., Hugenholtz, J., Kleerebezem, M., Van Swam, I., Bongers, R., Westerhoff, H., Snoep, J. (2002). Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiol. 148:1003–1013.
  • Hols, P., Kleerebezem, M., Schanck, A., Ferain, T., Hugenholtz, J., Delcour, J., de Vos, W. (1999). Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat. Biotechnol. 17:588–592.
  • Hoppe, A., Hoffmann, S., Gerasch, A., Gille, C., Holzhütter, H. (2011). FASIMU: flexible software for flux balance computation series in large metabolic networks. BMC Bioinform. 12:28.
  • Hugenholtz, J. (1993). Citrate metabolism in lactic acid bacteria. FEMS Microbiol. Rev. 12:165–178.
  • Hugenholtz, J. (2008). The lactic acid bacterium as a cell factory for food ingredient production. Int. Dairy J. 18:466–475.
  • Hugenholtz, J., Sybesma, W., Nierop Groot, M., Wisselink, W., Ladero, V., Burgués, K., van Sinderen, D., Piard, J., Eggink, G., Smid, E., Savoy, G., Sesma, F., Cansen, T., Hols, P., Kleerebezem, M. (2002). Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie van Leeuwenhoek 82:217–235.
  • Jung, T.S., Yeo, H.C., Reddy, S.G. (2009). WEbcoli: an interactive and asynchronous web application for in silico design and analysis of genome-scale E. coli model. Bioinform. 25:2850–2582.
  • Junker, B.H., Klukas, C., Schreiber, F. (2006). VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinform. 7:109.
  • Jyoti, B., Suresh, A., Venkatesh, K. (2004). Effect of preculturing conditions on growth of Lactobacillus rhamnosus on medium containing glucose and citrate. Microbiol. Res. 159:35–42.
  • Kacser, H., Burns, J. (1973). The control of flux. Symp. Soc. Exp. Biol. 27:65–104.
  • Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M. (2014). Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42:199–205.
  • Karp, P.D., Ouzounis, C.A., Moore-Kochlacs, C., Goldovsky, L., Kaipa, P., Ahrén, D., López Bigas, N. (2005). Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res. 33:6083–6089.
  • Keasling, J. (2010). Manufacturing molecules through metabolic engineering. Science 330:1355–1358.
  • Kim, H., Kim, T., Lee, S.Y. (2008). Metabolic flux analysis and metabolic engineering of microorganisms. Mol. BioSyst. 4:113–120.
  • Kim, S., Seol, E., Oh, Y., Wang, G., Park, S. (2009). Hydrogen production and metabolic flux analysis of metabolically engineered Escherichia coli strains. Int. J. Hydro. Energy 34:7417–7427.
  • Klamt, S., Saez-Rodriguez, J., Gilles, E.D. (2007). Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst. Biol. 1:2.
  • Kleerebezem, M., Hugenholtz, J. (2003). Metabolic pathway engineering in lactic acid bacteria. Curr. Opin. Biotech. 14:232–237.
  • Kleerebezem, M., Bolees, I., Groot, M., Mierau, I., Sybesma, W., Hugenholtz, J. (2002). Metabolic engineering of Lactococcus lactis: the impact of genomics and metabolic modeling. J. Biotechnol. 98:199–213.
  • Kleerebezem, M., Hols, P., Hugenholtz, J. (2000). Lactic acid bacteria as a cell factory: rerouting of carbon metabolism in Lactococcus lactis by metabolic engineering. Enzyme Microb. Tech. 26:840–848.
  • Ladero, V., Ramos, A., Wiersma, A., Goffin, P., Schanck, A., Kleerebezem, M., Hugenholtz, J., Smid, E., Hols, P. (2007). High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering. Appl. Environ. Microb. 73:1864–1872.
  • Lakshmanan, M., Koh, G., Chung, B., Lee, D. (2012). Software applications for flux balance analysis. Brief. in Bioinform. 15:108–122.
  • Le Blanc, J., Laiño, J., Juarez del Valle, M., Vannini, V., van Sinderen, D., Taranto, M., Font de Valdez, G., Savoy de Giori, G., Sesma, F. (2011). B-group vitamin production by lactic acid bacteria–current knowledge and potential application. J. App. Microbiol. 111:1297–1309.
  • Le Fèvre, F., Smidtas, S., Combe, C., Durot, M., d’Alché-Buc, F., Schachter, V. (2009). CycSim—an online tool for exploring and experimenting with genome-scale metabolic models. Bioinform. 25:1987–1988.
  • Lechardeur, D., Cesselin, B., Fernandez, A., Lamberet, G., Garrigues, C., Pedersen, M., Gaudu, P., Gruss, A. (2010). Using heme as an energy boost for lactic acid bacteria. Curr. Opin. Biotech. 22:1–7.
  • Lee, D.-Y., Yun, H., Park, S., Lee, S.Y. (2003). MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis. Bioinform. 19:2144–2146.
  • Lee, S.Y., Park, J.M., Kim, T.Y. (2011). Application of metabolic flux analysis in metabolic engineering. Meth. Enzymol. 498:67–93.
  • Lee, Y., Salminen, S. (2009). Handbook of Probiotics and Prebiotics, 2nd edn. New York: John Wiley & Sons.
  • Liao, Y.C., Tsai, M.H., Chen, F.C., Hsiung, C.A. (2012). GEMSiRV: a software platform for GEnome-scale metabolic model simulation, reconstruction and visualization. Bioinform. 13:1752–1758.
  • Liu, J., Wang, Q., Zou, H., Liu, Y., Wang, J., Gan, K., Xiang, J. (2013). Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution. Micro. Biotechnol. 6:685–693.
  • Liu, S. (2003). Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. Int. J. Food Microbiol. 83:115–131.
  • Lopez de Felipe, F., Starrenburg, M., Hugenholtz, J. (1997). The role of NADH-oxidation in acetoin and diacetil production from glucose in Lactococcus lactis. FEMS Microbiol. Lett. 156:15– 19.
  • Lopez de Felipe, F., Kleerebezem, M., de Vos, W., Hugenholtz, J. (1998). Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J. Bacteriol. 180:3804–3808.
  • Mahadevan, R., Schilling, C. (2003). The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metabol. Eng. 5:264–276.
  • Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., Pavlov, A., Pavlova, N., Karamychev, V., Polouchine, N., Shakhova, V., Grigoriev, I., Lou, Y., Rohksare, D., Lucas, S., Huang, K., Goodstein, D.M., Hawkins, T., Plengvidhya, V., Welker, D., Hughes, J., Goh, Y., Benson, A., Baldwin, K., Lee, J.-H., Dıaz-Muniz, I., Dosti, B., Smeianov, V., Wechter, W., Barabote, R., Lorca, G., Altermann, E., Barrangou, R., Ganesan, B., Xie, Y., Rawsthorne, H., Tamir, D., Parker, C., Breidt, F., Broadbent, J., Hutkins, R., O’Sullivan, D., Steele, J., Unlu, G., Saier, M., Klaenhammer, T., Richardson, P., Kozyavkin, S., Weimer, B., Mills, D. (2006). Comparative genomics of the lactic acid bacteria. PNAS 103:15611–15616.
  • Mao, L., Verwoerd, W. (2014). Computational comparison of mediated current generation capacity of Chlamydomonas reinhardtii in photosynthetic and respiratory growth modes. J. Biosci. & Bioeng. 118:565–574.
  • Mazzoli, R., Bosco, F., Mizrahi, I., Bayer, E., Pessione, E. (2014). Towards lactic acid bacteria-based biorefineries. Biotechnol Adv. 32:1216–1236.
  • Medina de Figueroa, R., Alvarez, F., Pesce de Ruiz Holgado, A., Oliver, G., Sesma, F. (2000). Citrate utilization by homo- and heterofermentative lactobacilli. Microbiol. Res. 154:313–320.
  • Mierau, I., Kleerebezem, M. (2005). 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl. Microbiol. Biotechnol. 68:705–717.
  • Millard, P., Sokol, S., Letisse, F., Portais, J. (2014). IsoDesign: a software for optimizing the design of 13C metabolic flux analysis experiments. Biotechnol. Bioeng. 111:202–208.
  • Monedero, V., Pérez-Martínez, G., Yebra, M. (2010). Perspectives of engineering lactic acid bacteria for biotechnological polyol production. Appl. Microbiol. Biotechnol. 86:1003–1015.
  • Mozzi, F., Raya, R., Vignolo, G. (2010). Biotechnology of Lactic Acid Bacteria. Novel Applications. New York: Wiley-Blackwell.
  • Nam, J., Han, K., Yoon, E., Shin, D., Jin, J., Lee, D., Lee, S., Lee, J. (2004). In silico analysis of lactate producing metabolic network in Lactococcus lactis. Enz. Microb. Tech. 35:654–662.
  • Nargund, S., Joffe, M.E., Tran, D., Tugarinov, V., Sriram, G. (2013). Nuclear magnetic resonance methods for metabolic fluxomics. Syst. Metabol. Eng. Humana Press. 335–351.
  • Neves, A.R., Pool, W.A., Kok, J., Kuipers, O.P., Santos, H. (2005). Overview on sugar metabolism and its control in Lactococcus lactis—the input from in vivo NMR. FEMS Microbiol. Rev. 29:531–554.
  • Neves, A.R., Ramos, A., Nunes, M.C., Kleerebezem, M., Hugenholtz, J., de Vos, W.M., Almeida, J., Santos, H. (1999). In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Biotech. & Bioeng ’. 64:200–212.
  • Nielsen, J., Villadsen, J., Lidén, G. (2002). Bioreaction Engineering Principles. New York, NY: Kluwer Academic/Plenum Publishers .
  • Novak, L., Loubiere, P. (2000). The metabolic network of Lactococcus lactis: distribution of 14C labeled substrates between catabolic and anabolic pathways. J. Bacteriol. 182:1136–1143.
  • Oddone, G., Mills, D., Block, D. (2009). A dynamic genome-scale flux model of Lactococcus lactis to increase specific recombinant protein expression. Metab. Eng. 11:367–381.
  • Oh, Y., Kim, H., Park, S., Kim, M., Ryu, D. (2008). Metabolic-flux analysis of hydrogen production pathway in Citrobacter amalonaticus Y19. Int. J. Hydr. Energy 33:1471–1482.
  • Okano, K., Tanaka, T., Ogino, C., Fukuda, H., Kondo, A. (2010). Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl. Microbiol. Biotechnol. 85:413–423.
  • Olguín, N., Bordons, A., Reguant, C. (2009). Influence of ethanol and pH on the gene expression of the citrate pathway in Oenococcus oeni. Food Microbiol. 26:197–203.
  • Oliveira, A., Nielsen, J., Förster, J. (2005). Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol. 5:39.
  • Orman, M., Ierapetritou, M., Androulakis, I., Berthiaume, F. (2011). Metabolic response of perfused livers to various xxygenation conditions. Biotech. & Bioeng. 108:2947–2957.
  • Orth, J., Thiele, I., Palsson, B. (2010). What is flux balance analysis? Nat. Biotech. 28:245–248.
  • Otero, J., Nielsen, J. (2010). Industrial systems biology. Biotechnol. Bioeng. 105:439–460.
  • Parajó, J., Alonso, J., Moldes, A. (1997). Production of lactic acid from lignocellulose in a single stage of hydrolysis and fermentation. Food Biotech. 11:45–58.
  • Pastink, M., Teusink, B., Hols, P., Visser, S., de Vos, W., Hugenholtz, J. (2009). Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria. Appl. Environ. Microbiol. 75:3627–3633.
  • Patel, S., Majumder, A., Goyal, A. (2012). Potentials of exopolysaccharides from lactic acid bacteria. Ind. J. Microbiol. 52:3–12.
  • Patnaik, R., Louie, S., Gavrilovic, V., Perry, K., Stemmer, W., Ryan, C., Cardayré, S. (2002). Genome shuffling of Lactobacillus for improved acid tolerance. Nat. Biotech. 20:707–712.
  • Patra, F., Tomar, S., Arora, S. (2009). Technological and functional applications of low-calorie sweeteners from lactic acid bacteria. J. Food Sci. 74:16–23.
  • Pedersen, M., Gaudu, P., Lechardeur, D., Petit, M., Gruss, A. (2012). Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Ann. Rev. Food Sci. Technol. 3:37–58.
  • Pedersen, M., Iversen, S., Sørensen, K., Johansen, E. (2005). The long and winding road from the research laboratory to industrial applications of lactic acid bacteria. FEMS Microbiol. Rev. 29:611–624.
  • Peterbauer, C., Maischberger, T., Haltrich, D. (2011). Food-grade gene expression in lactic acid bacteria. Biotechnol. J. 9:1147–1161.
  • Pfeiffer, T., Sánchez-Valdenebro, I., Nuño, J., Montero, F., Schuster, S. (1999). METATOOL: for studying metabolic networks. Bioinform. 15:251–257.
  • Pfeiler, E., Klaenhammer, T. (2007). The genomics of lactic acid bacteria. Trends in Microbiol. 15:546–553.
  • Platteeuw, C., Hugenholtz, J., Starrenburg, M., van Alen-Boerrigter, I., de Vos, W. (1995). Metabolic engineering of Lactococcus lactis: influence of the overproduction of alpha-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions. Appl. Environ. Microbiol. 61:3967–3971.
  • Poolman, M., Venkatesh, K., Pidcock, M., Fell, D. (2004). A method for the determination of flux in elementary modes, and its application to Lactobacillus rhamnosus. Biotechnol. Bioeng. 88:601–612.
  • Putri, S., Nakayama, Y., Matsuda, F., Uchikata, T., Kobayashi, S., Matsubara, A., Fukusaki, E. (2013). Current metabolomics: practical applications. J. Biosci. & Bioeng. 115:579–589.
  • Quek, L.E., Wittmann, C., Nielsen, L., Krömer, J. (2009). OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microbial. Cell Fact. 8:8–25.
  • Rafieenia, R., Chaganti, S. (2014). Flux balance analysis of different carbon source fermentation with hydrogen producing Clostridium butyricum using Cell Net Analyzer. Biores. Tech. (in press).
  • Rocha, I., Maia, P., Evangelista, P., Vilaça, P., Soraes, S., Pinto, J., Nielsen, J., Patil, K., Ferreira, E., Rocha, M. (2010). OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst. Biol. 4(4):4.
  • Roopashri, A., Varadaraj, M. (2014). Hydrolysis of flatulence causing oligosaccharides by α-d-galactosidase of a probiotic Lactobacillus plantarum MTCC 5422 in selected legume flours and elaboration of probiotic attributes in soy-based fermented product. Eur. Food Res. Technol. 239:99–115.
  • Rud, I., Solem, C., Jensen, P., Axelsson, L., Naterstad, K. (2008). Co-factor engineering in lactobacilli: effects of uncoupled ATPase activity on metabolic fluxes in Lactobacillus (L.) plantarum and L. sakei. Metab. Eng. 10:207–215.
  • Saha, B., Racine, F. (2011). Biotechnological production of mannitol and its applications. Appl. Microbiol. Biotechnol. 89:879–891.
  • Salminen, S., von Wright, A., Ouwehand, A. (2004). Lactic Acid Bacteria. New York: Marcel Dekker.
  • Santos, F., Wegkamp, A., de Vos, W., Smid, E., Hugenholtz, J. (2008). High-level folate production in fermented foods by the B12 producer Lactobacillus reuteri JCM1112. Appl. Environ. Microb. 74:3291–3294.
  • Santos Pontes, D., Santiago Pacheco de Azevedo, M., Chatel, J., Langella, P., Azevedo, V., Miyoshi, A. (2011). Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Prot. Expr. & Purif. 79:165–175.
  • Sauer, U. (2006). Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol. 62:1–10.
  • Schatschneider, S., Persicke, M., Watt, S., Hublik, G., Pühler, A., Niehaus, K., Vorhölter, F. (2013). Establishment, in silico analysis, and experimental verification of a large-scale metabolic network of the xanthan producing Xanthomonas campestris pv. campestris strain B100. J. Biotech. 167:123–134.
  • Sela, D., Chapman, J., Adeuya, A., Kim, J., Chen, F., Whitehead, T., Lapidus, A., Rokhsar, D., Lebrilla, C., German, J., Price, N., Richardson, P., Mills, D. (2008). The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. PNAS 105:18964–18969.
  • Seol, E., Ainala, S., Sekar, B., Park, S. (2014). Metabolic engineering of Escherichia coli strains for co-production of hydrogen and ethanol from glucose. Int. J. Hydro. Energy 39:19323–19330.
  • Shanmugam, S., Chaganti, S., Lalman, J., Heath, D. (2014). Using a statistical approach to model hydrogen production from a steam exploded corn stalk hydrolysate fed to mixed anaerobic cultures in an ASBR. Int. J. Hydro. Energy 39:10003–10015.
  • Smid, E., van Enckevort, F., Wegkamp, A., Boekhorst, J., Molenaar, D., Hugenholtz, J., Siezen, R., Teusink, B. (2005). Metabolic models for rational improvement of lactic acid bacteria as cell factories. J. Appl. Microb. 98:1326–1331.
  • Song, S., Vieille, C. (2009). Recent advances in the biological production of mannitol. Appl. Microbiol. Biotechnol. 84:55–62.
  • Sroka, J., Bieniasz-Krzywiec, Ł., Gwóźdź, S., Leniowski, D., Łącki, J., Markowski, M., Kierzek, A. M. (2011). Acorn: a grid computing system for constraint based modeling and visualization of the genome scale metabolic reaction networks via a web interface. BMC Bioinform. 12:196.
  • Steidler, L., Hans, W., Schotte, L., Neirynck, S., Obermeier, F., Falk, W., Fiers, W., Remaut, E. (2000). Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289:1352–1355.
  • Stephanopoulos, G. (1999). Metabolic fluxes and metabolic engineering. Metab. Eng. 1:1–11.
  • Stephanopoulos, G., Aristidou, A., Nielsen, J. (1998). Metabolic Engineering. Principles and Methodologies. London: Academic Press.
  • Stephanopoulos, G., Vallino, J. (1991). Network rigidity and metabolic engineering in metabolite overproduction. Science 252:1675–1681.
  • Sybesma, W., Starrenburg, M., Kleerebezem, M., Mierau, I., de Vos, W., Hugenholtz, J. (2003). Increased production of folate by metabolic engineering of Lactococcus lactis. Appl. Environ. Microb. 69:3069–3076.
  • Tarahomjoo, S. (2012). Development of vaccine delivery vehicles based on lactic acid bacteria. Mol. Biotechnol. 51:183–199.
  • Teusink, B., Bachmann, H., Molenaar, D. (2011). Systems biology of lactic acid bacteria: a critical review. Microbial. Cell Fact. 10(Suppl. 1):S11.
  • Teusink, B., Smid, E. (2006). Modelling strategies for the industrial exploitation of lactic acid bacteria. Nat. Rev. Microbiol. 4:46–56.
  • Teusink, B., Wiersma, A., Molenaar, D., Francke, C., de Vos, W., Siezen, R., Smid, E. (2006). Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a Genome-scale metabolic model. J. Biol. Chem. 281:40041–40048.
  • Turhan, I., Bialka, K., Demirci, A., Karhan, M. (2010). Enhanced lactic acid production from carob extract by Lactobacillus casei using invertase pretreatment. Food Biotech. 24:364–374.
  • van den Broek, L., Hinz, S., Beldman, G., Vincken, J., Voragen, A. (2008). Bifidobacterium carbohydrases—their role in breakdown and synthesis of (potential) prebiotics. Mol. Nutr. Food Res. 52:146–163.
  • van Hylckama, J., Hugenholtz, J. (2007). Mining natural diversity of lactic acid bacteria for flavour and health benefits. Int. Dairy J. 17:1290–1297.
  • Venkatesh, K. (1997). Metabolic flux analysis of lactic acid fermentation: effects of pH and lactate ion concentration. Process. Biochem. 32:651–655.
  • Villatoro-Hernández, J., Kuipers, O., Saucedo-Cárdenas, O., Montes, R. (2012). Heterologous protein expression by Lactococcus lactis. In: Recombinant Gene Expression: Reviews and Protocols, 3rd edn. Springer Science and Business Media.
  • Wardani, A., Egawa, S., Nagahisa, K., Shimizu, H., Shioya, S. (2006). Computational prediction of impact of rerouting the carbon flux in metabolic pathway on cell growth and nisin production by Lactococcus lactis. Biochem. Eng. J. 28:220–230.
  • Weitzel, M., Nöh, K., Dalman, T., Niedenführ, S., Stute, B., Wiechert, W. (2013). 13CFLUX2—high-performance software suite for 13C-metabolic flux analysis. Bioinformatics 29:143–145.
  • Welman, A., Maddox, I., Archer, R. (2006). Metabolism associated with raised metabolic flux to sugar nucleotide precursors of exopolysaccharides in Lactobacillus delbrueckii subsp. Bulgaricus. J. Ind. Microbiol. Biotechnol. 33:391–400.
  • Widiastuti, H., Lee, D., Karimi, I. (2012). In silico simulation for enhancing production of organic acids in Zymomonas mobilis. Comp. Aided Chem. Eng. 31:900–904.
  • Wiechert, W. (2001). 13C metabolic flux analysis. Metab. Eng. 3:195–206.
  • Wiechert, W., Mollney, M., Petersen, S., de Graaf, A. (2001). A universal framework for 13C metabolic flux analysis. Metab. Eng. 3:265–283.
  • Wisselink, H., Mars, A., van der Meer, P., Eggink, G., Hugenholtz, J. (2004). Metabolic engineering of mannitol production in Lactococcus lactis: influence of overexpression of mannitol 1-phosphate dehydrogenase in different genetic backgrounds. Appl. Environ. Microbiol. 70:4286–4292.
  • Woolston, B., Edgar, S., Stephanopoulos, G. (2013). Metabolic engineering: past and future. Ann. Rev. Chem. Biomol. Eng. 4:259–288.
  • Xu, N., Liu, J., Ai, L., Liu, L. (2014). Reconstruction and analysis of the genome-scale metabolic model of Lactobacillus casei LC2W. Gene (in press).
  • Yang, J., Wang, Z., Zhu, N., Wang, B., Chen, T., Zhao, X. (2014). Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions. Microbiol. Res. 169:432–440.
  • Yoo, H., Antoniewicz, M.R., Stephanopoulos, G., Kelleher, J.K. (2008). Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line. J. Biol. Chem. 283:20621–20627.
  • Yue, M., Cao, H., Zhang, J., Li, S., Meng, Y., Chen, W., Huang, L., Du, Y. (2013). Improvement of mannitol production by Lactobacillus brevis mutant 3-A5 based on dual-stage pH control and fed-batch fermentations. World J Microbiol. Biotechnol. 29:1923–1930.
  • Zamboni, N., Fendt, S.M., Rühl, M., Sauer, U. (2013). 13C-based metabolic flux analysis. Nat. Prot. 4:878–892.
  • Zhang, H., Cai, Y. (2014). Lactic Acid Bacteria. Fundamentals and Practice. Dordrecht: Springer Science+Business Media.
  • Zhu, Y., Zhang, Y., Li, Y. (2009). Understanding the industrial application potential of lactic acid bacteria through genomics. Appl. Microbiol. Biotechnol. 83:597–610.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.