1,624
Views
0
CrossRef citations to date
0
Altmetric
Review

Docosahexaenoic acid production by Schizochytrium sp.: review and prospect

, , , &

References

  • Aasen, I. M., H. Ertesvåg, T. M. B. Heggeset, B. Liu, T. Brautaset, O. Vadstein, and T. E. Ellingsen. 2016. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl. Microbiol. Biot. 100 (10):4309–4321. doi:10.1007/s00253-016-7498-4.
  • Allen, K. M., H. Habte-Tsion, K. R. Thompson, K. Filer, J. H. Tidwell, and V. Kumar. 2019. Freshwater microalgae (Schizochytrium sp.) as a substitute to fish oil for shrimp feed. Sci. Rep. 9 (1):6178.
  • Armenta, R. E., and M. C. Valentine. 2013. Single-cell oils as a source of omega-3 fatty acids: An overview of recent advances. J. Am. Oil Chem. Soc. 90 (2):167–182. doi:10.1007/s11746-012-2154-3.
  • Arora, N., H. Yen, and G. P. Philippidis. 2020. Harnessing the power of mutagenesis and adaptive laboratory evolution for high lipid production by oleaginous microalgae and yeasts. Sustainability 12 (12):5125. doi:10.3390/su12125125.
  • Athalye, S. K., R. A. Garcia, and Z. Wen. 2009. Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. J. Agr. Food Chem. 57 (7):2739–2744. doi:10.1021/jf803922w.
  • Béligon, V., G. Christophe, P. Fontanille, and C. Larroche. 2016. Microbial lipids as potential source to food supplements. Curr. Opin. Food Sci. 7 (2):35–42. doi:10.1016/j.cofs.2015.10.002.
  • Bi, Z. Q., L. J. Ren, X. C. Hu, X. M. Sun, S. Y. Zhu, X. J. Ji, and H. Huang. 2018. Transcriptome and gene expression analysis of docosahexaenoic acid producer Schizochytrium sp. under different oxygen supply conditions. Biotechnol. Biofuels 11 (1):249. doi:10.1186/s13068-018-1250-5.
  • Bowles, R. D., A. E. Hunt, G. B. Bremer, M. G. Duchars, and R. A. Eaton. 1999. Long-chain n-3 polyunsaturated fatty acid production by members of the marine protistan group the Thraustochytrids: Screening of isolates and optimisation of docosahexaenoic acid production. J. Biotechnol. 70 (1–3):193–202. doi:10.1016/S0168-1656(99)00072-3.
  • Burja, A. M., H. Radianingtyas, A. Windust, and C. J. Barrow. 2006. Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: Screening of strains and optimization of omega-3 production. Appl. Microbiol. Biot. 72 (6):1161–1169. doi:10.1007/s00253-006-0419-1.
  • Byreddy, A., A. Gupta, C. Barrow, and M. Puri. 2015. Comparison of cell disruption methods for improving lipid extraction from thraustochytrid strains. Mar. Drugs 13 (8):5111–5127. doi:10.3390/md13085111.
  • Chang, G., N. Gao, G. Tian, Q. Wu, M. Chang, and X. Wang. 2013. Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresour. Technol. 142:400–406. doi:10.1016/j.biortech.2013.04.107.
  • Chang, M., T. Zhang, X. Guo, Y. Liu, R. Liu, Q. Jin, and X. Wang. 2020. Optimization of cultivation conditions for efficient production of carotenoid-rich DHA oil by Schizochytrium sp. S31. Process Biochem. 94:190–197. doi:10.1016/j.procbio.2020.04.007.
  • Chen, B., C. Lee, J. Chang, and C. Hsueh. 2015. Impedance fingerprint selection of DHA-producing photoautotrophic microalgae. J. Taiwan Inst. Chem. E 57 (12):36–41. doi:10.1016/j.jtice.2015.05.016.
  • Chen, W., P. Zhou, M. Zhang, Y. Zhu, X. Wang, X. Luo, Z. Bao, and L. Yu. 2016a. Transcriptome analysis reveals that up-regulation of the fatty acid synthase gene promotes the accumulation of docosahexaenoic acid in Schizochytrium sp. S056 when glycerol is used. Algal Res. 15:83–92. doi:10.1016/j.algal.2016.02.007.
  • Chen, W., P. Zhou, Y. Zhu, C. Xie, L. Ma, X. Wang, Z. Bao, and L. Yu. 2016b. Improvement in the docosahexaenoic acid production of Schizochytrium sp. S056 by replacement of sea salt. Bioprocess. Biosyst. Eng. 39 (2):315–321. doi:10.1007/s00449-015-1517-1.
  • Chi, Z., D. Pyle, Z. Wen, C. Frear, and S. Chen. 2007. A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem. 42 (11):1537–1545. doi:10.1016/j.procbio.2007.08.008.
  • Chi, Z., Y. Liu, C. Frear, and S. Chen. 2009. Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl. Microbiol. Biot. 81 (6):1141–1148. doi:10.1007/s00253-008-1740-7.
  • De Oliveira Finco, A. M., L. D. Goyzueta Mamani, J. C. De Carvalho, G. V. De Melo Pereira, V. Thomaz-Soccol, and C. R. Soccol. 2017. Technological trends and market perspectives for production of microbial oils rich in omega-3. Crit. Rev. Biotechnol. 5 (37):656–671. doi:10.1080/07388551.2016.1213221.
  • Fan, Y., C. Ren, F. Meng, K. Deng, G. Zhang, and F. Wang. 2019. Effects of algae supplementation in high-energy dietary on fatty acid composition and the expression of genes involved in lipid metabolism in Hu sheep managed under intensive finishing system. Meat Sci. 157:107872. doi:10.1016/j.meatsci.2019.06.008.
  • Fu, J., T. Chen, H. Lu, Y. Lin, X. Xie, H. Tian, C. Zheng, and D. He. 2016. Enhancement of docosahexaenoic acid production by low-energy ion implantation coupled with screening method based on Sudan black B staining in Schizochytrium sp. Bioresour. Technol. 221:405–411. doi:10.1016/j.biortech.2016.09.058.
  • Gheysen, L., R. Demets, J. Devaere, T. Bernaerts, P. Goos, A. Van Loey, L. De Cooman, and I. Foubert. 2019. Impact of microalgal species on the oxidative stability of n-3 LC-PUFA enriched tomato puree. Algal Res. 40:101502. doi:10.1016/j.algal.2019.101502.
  • Guo, D., L. Tong, X. Ji, L. Ren, and Q. Ding. 2020. Development of a strategy to improve the stability of culture environment for docosahexaenoic acid fermentation by Schizochytrium sp. Appl. Biochem. Biotech. 192 (3):881–894. doi:10.1007/s12010-020-03298-7.
  • Guo, D., X. Ji, L. Ren, F. Yin, X. Sun, H. Huang, and G. Zhen. 2018. Development of a multi-stage continuous fermentation strategy for docosahexaenoic acid production by Schizochytrium sp. Bioresour. Technol. 269:32–39. doi:10.1016/j.biortech.2018.08.066.
  • Guo, D., X. Ji, L. Ren, G. Li, F. Yin, and H. Huang. 2016. Development of a real-time bioprocess monitoring method for docosahexaenoic acid production by Schizochytrium sp. Bioresour. Technol. 216:422–427. doi:10.1016/j.biortech.2016.05.044.
  • Guo, D., X. Ji, L. Ren, G. Li, and H. Huang. 2017. Improving docosahexaenoic acid production by Schizochytrium sp. using a newly designed high-oxygen-supply bioreactor. AIChE J 63 (10):4278–4286. doi:10.1002/aic.15783.
  • Gupta, A., D. Singh, A. R. Byreddy, T. Thyagarajan, S. P. Sonkar, A. S. Mathur, D. K. Tuli, C. J. Barrow, and M. Puri. 2016. Exploring omega-3 fatty acids, enzymes and biodiesel producing Thraustochytrids from Australian and Indian marine biodiversity. Biotechnol. J. 11 (3):345–355. doi:10.1002/biot.201500279.
  • Gupta, A., R. E. Abraham, C. J. Barrow, and M. Puri. 2015. Omega-3 fatty acid production from enzyme saccharified hemp hydrolysate using a novel marine Thraustochytrid strain. Bioresour. Technol. 184:373–378. doi:10.1016/j.biortech.2014.11.031.
  • Gupta, D. K., L. B. Pena, M. C. Romero-Puertas, A. Hernandez, M. Inouhe, and L. M. Sandalio. 2017. NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity. Plant Cell Environ. 40 (4):509–526. doi:10.1111/pce.12711.
  • He, Y., X. Wang, Y. Zhang, Z. Guo, Y. Jiang, and F. Chen. 2019. Enzymatic ethanolysis subjected to Schizochytrium biomass: Sequential processing for DHA enrichment and biodiesel production. Energy Convers. Manag. 184:159–171. doi:10.1016/j.enconman.2019.01.051.
  • Hu, X., L. Ren, S. Chen, L. Zhang, X. Ji, and H. Huang. 2015. The roles of different salts and a novel osmotic pressure control strategy for improvement of DHA production by Schizochytrium sp. Bioprocess. Biosyst. Eng. 38 (11):2129–2136. doi:10.1007/s00449-015-1452-1.
  • Huang, J., T. Aki, T. Yokochi, T. Nakahara, D. Honda, S. Kawamoto, S. Shigeta, K. Ono, and O. Suzuki. 2003. Grouping newly isolated docosahexaenoic acid-producing Thraustochytrids based on their polyunsaturated fatty acid profiles and comparative analysis of 18S rRNA genes. Mar. Biotechnol. 5 (5):450–457. doi:10.1007/s10126-002-0110-1.
  • Huang, T. Y., W. C. Lu, and I. M. Chu. 2012. A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid. Bioresour. Technol. 123:8–14. doi:10.1016/j.biortech.2012.07.068.
  • Humhal, T., O. Kronusová, P. Kaštánek, T. Potočár, J. Kohoutková, and T. Brányik. 2019. Influence of nitrogen sources on growth of Thraustochytrids in waste water from the demineralization of cheese whey. Czech J. Food Sci. 37 (5):383–390. doi:10.17221/172/2018-CJFS.
  • Jiang, J., S. Zhu, Y. Zhang, X. Sun, X. Hu, H. Huang, and L. Ren. 2019. Integration of lipidomic and transcriptomic profiles reveals novel genes and regulatory mechanisms of Schizochytrium sp. in response to salt stress. Bioresour. Technol. 294:122231. doi:10.1016/j.biortech.2019.122231.
  • Ju, J., B. Oh, D. Ko, S. Heo, J. Lee, Y. Kim, K. Yang, J. Seo, W. Hong, and C. Kim. 2019. Boosting productivity of heterotrophic microalgae by efficient control of the oxygen transfer coefficient using a microbubble sparger. Algal Res. 41:101474. doi:10.1016/j.algal.2019.101474.
  • Ju, J., D. Ko, S. Heo, J. Lee, Y. Kim, B. Lee, M. Kim, C. Kim, J. Seo, and B. Oh. 2020. Regulation of lipid accumulation using nitrogen for microalgae lipid production in Schizochytrium sp. ABC101. Renew. Energ. 153:580–587. doi:10.1016/j.renene.2020.02.047.
  • Kralik, Z., G. Kralik, M. Grčević, D. Hanžek, and P. Margeta. 2020. Microalgae Schizochytrium limacinum as an alternative to fish oil in enriching table eggs with n‐3 polyunsaturated fatty acids. J. Sci. Food Agr. 100 (2):587–594. doi:10.1002/jsfa.10052.
  • Kuo, C., H. Liao, Y. Wang, H. D. Wang, C. Shieh, and C. Tseng. 2017. Highly efficient extraction of EPA/DHA-enriched oil from cobia liver using homogenization plus sonication. Eur. J. Lipid Sci. Tech. 119 (10):1600466. doi:10.1002/ejlt.201600466.
  • Li, D., K. Zhang, L. Chen, M. Ding, M. Zhao, and S. Chen. 2017. Selection of Schizochytrium limacinum mutants based on butanol tolerance. Electron. J. Biotechnol. 30:58–63. doi:10.1016/j.ejbt.2017.08.009.
  • Li, P., H. Li, K. Jing, A. David, J. Lin, and G. Deng. 2019a. Evaluation of lipid extraction from microalgae based on different phase regions of CO2-expanded ethanol. Chem. Eng. Process 138:1–6. doi:10.1016/j.cep.2019.02.011.
  • Li, W., Y. Bian, Y. Chai, H. Ding, S. Sheng, F. Wu, and J. Wang. 2020. Ultrasound-assisted extraction ameliorates the physicochemical properties of defatted mulberry seed protein to promote lipid production in Schizochytrium sp. SR21. Biomass Convers. Biorefin. http://link.springer.com/10.1007/s13399-020-00626–z.
  • Li, W., Y. Bian, Y. Chai, H. Ding, S. Sheng, F. Wu, J. Wang, J. Li, R. Liu, G. Chang, et al. 2015. A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresour. Technol. 177:51–57. doi:10.1016/j.biortech.2014.11.046.
  • Li, Z., T. Meng, X. Ling, J. Li, C. Zheng, Y. Shi, Z. Chen, Z. Li, Q. Li, Y. Lu, et al. 2018b. Overexpression of malonyl-CoA: ACP transacylase in Schizochytrium sp. to improve polyunsaturated fatty acid production. J. Agr. Food Chem. 66 (21):5382–5391. doi:10.1021/acs.jafc.8b01026.
  • Li, Z., X. Chen, J. Li, T. Meng, L. Wang, Z. Chen, Y. Shi, X. Ling, W. Luo, D. Liang, et al. 2018a. Functions of PKS genes in lipid synthesis of Schizochytrium sp. by gene disruption and metabolomics analysis. Mar. Biotechnol. 20 (6):792–802. doi:10.1007/s10126-018-9849-x.
  • Li, Z., X. Ling, H. Zhou, T. Meng, J. Zeng, W. Hang, Y. Shi, and N. He. 2019b. Screening chemical modulators of benzoic acid derivatives to improve lipid accumulation in Schizochytrium limacinum SR21 with metabolomics analysis. Biotechnol. Biofuels 12 (1):209–219. doi:10.1186/s13068-019-1552-2.
  • Liang, L., X. Zheng, W. Fan, D. Chen, Z. Huang, J. Peng, J. Zhu, W. Tang, Y. Chen, and T. Xue. 2020. Genome and transcriptome analyses provide insight into the omega-3 long-chain polyunsaturated fatty acids biosynthesis of Schizochytrium limacinum SR21. Front. Microbiol. 11:687. doi:10.3389/fmicb.2020.00687.
  • Ling, X., J. Guo, X. Liu, X. Zhang, N. Wang, Y. Lu, and I. Ng. 2015. Impact of carbon and nitrogen feeding strategy on high production of biomass and docosahexaenoic acid (DHA) by Schizochytrium sp. LU310. Bioresour. Technol. 184:139–147. doi:10.1016/j.biortech.2014.09.130.
  • Lopes, T. I. B., E. S. Pereira, D. D. S. Freitas, S. L. Oliveira, and G. B. Alcantara. 2020. Spectral profiles of commercial omega-3 supplements: An exploratory analysis by ATR-FTIR and H-1 NMR. J. Food Sci. Tech. Mys. 57 (4):1251–1257. doi:10.1007/s13197-019-04157-y.
  • Ludevese-Pascual, G., M. Dela Peña, and J. Tornalejo. 2016. Biomass production, proximate composition and fatty acid profile of the local marine Thraustochytrid isolate, Schizochytrium sp. LEY7 using low-cost substrates at optimum culture conditions. Aquac. Res. 47 (1):318–328. doi:10.1111/are.12494.
  • Metz, J. G. 2001. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293 (5528):290–293. doi:10.1126/science.1059593.
  • Morabito, C., C. Bournaud, C. Maës, M. Schuler, R. Aiese Cigliano, Y. Dellero, E. Maréchal, A. Amato, and F. Rébeillé. 2019. The lipid metabolism in thraustochytrids. Prog. Lipid Res. 76:101007. doi:10.1016/j.plipres.2019.101007.
  • Mu, H., H. Zhang, Y. Li, Y. Zhang, X. Wang, Q. Jin, and X. Wang. 2016. Enrichment of DPAn-6 and DHA from Schizochytrium sp. oil by low-temperature solvent crystallization. Ind. Eng. Chem. Res. 55 (3):737–746. doi:10.1021/acs.iecr.5b03766.
  • Nakahara, T., T. Higashihara, and S. Tanaka. 1996. Production of docosahexaenoic and docosapexaenoic acids by Schizochytrium sp. isolated from Yap islands. J. Am. Oil Chem. Soc. 11 (73):1421–1426. doi:10.1007/BF02523506.
  • Nazir, Y., H. Halim, N. K. N. Al-Shorgani, V. Manikan, A. A. Hamid, and Y. Song. 2020. Efficient conversion of extracts from low-cost, rejected fruits for high-valued Docosahexaenoic acid production by Aurantiochytrium sp. SW1. Algal Res. 50:101977. doi:10.1016/j.algal.2020.101977.
  • Nguyen, H. C., C. Su, Y. Yu, and D. T. M. Huong. 2018. Sugarcane bagasse as a novel carbon source for heterotrophic cultivation of oleaginous microalga Schizochytrium sp. Ind. Crop. Prod. 121:99–105. doi:10.1016/j.indcrop.2018.05.005.
  • Ning, Y., and X. Liu. 2020. Enteromorpha hydrolysate as carbon source for fatty acids production of microalgae Schizochytrium sp. Energy 203:117900. doi:10.1016/j.energy.2020.117900.
  • Park, H., M. Kwak, J. Seo, J. Ju, S. Heo, S. Park, and W. Hong. 2018. Enhanced production of carotenoids using a Thraustochytrid microalgal strain containing high levels of docosahexaenoic acid-rich oil. Bioprocess. Biosyst. Eng. 41 (9):1355–1370. doi:10.1007/s00449-018-1963-7.
  • Park, S., K. Kim, S. Han, E. J. Kim, and Y. Choi. 2017. Organic solvent-free lipid extraction from wet Aurantiochytrium sp. biomass for co-production of biodiesel and value-added products. Appl. Biol. Chem. 60 (2):101–108. doi:10.1007/s13765-017-0258-z.
  • Peberdy, J. F. 1980. Protoplast fusion - a tool for genetic manipulation and breeding in industrial microorganisms. Enzyme Microb. Technol. 2 (1):23–29. doi:10.1016/0141-0229(80)90004-6.
  • Perveen, Z., H. Ando, A. Ueno, Y. Ito, Y. Yamamoto, Y. Yamada, T. Takagi, T. Kaneko, K. Kogame, and H. Okuyama. 2006. Isolation and characterization of a novel Thraustochytrid-like microorganism that efficiently produces docosahexaenoic acid. Biotechnol. Lett. 28 (3):197–202. doi:10.1007/s10529-005-5335-4.
  • Pyle, D. J., R. A. Garcia, and Z. Wen. 2008. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: Effects of impurities on DHA production and algal biomass composition. J. Agr. Food Chem. 56 (11):3933–3939. doi:10.1021/jf800602s.
  • Qu, L., L. Ren, G. Sun, X. Ji, Z. Nie, and H. Huang. 2013. Batch, fed-batch and repeated fed-batch fermentation processes of the marine Thraustochytrid Schizochytrium sp. for producing docosahexaenoic acid. Bioprocess. Biosyst. Eng. 36 (12):1905–1912. doi:10.1007/s00449-013-0966-7.
  • Ratledge, C. 2004. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie 86:807–815. doi:10.1016/j.biochi.2004.09.017.
  • Ren, L., S. Chen, L. Geng, X. Ji, X. Xu, P. Song, S. Gao, and H. Huang. 2018. Exploring the function of acyltransferase and domain replacement in order to change the polyunsaturated fatty acid profile of Schizochytrium sp. Algal Res. 29:193–201. doi:10.1016/j.algal.2017.11.021.
  • Ren, L., X. Ji, H. Huang, L. Qu, Y. Feng, Q. Tong, and P. Ouyang. 2010. Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Appl. Microbiol. Biot. 87 (5):1649–1656. doi:10.1007/s00253-010-2639-7.
  • Ren, L., X. Sun, L. Zhang, H. Huang, and Q. Zhao. 2020. Exergy analysis for docosahexaenoic acid production by fermentation and strain improvement by adaptive laboratory evolution for Schizochytrium sp. Bioresour. Technol. 298:122562. doi:10.1016/j.biortech.2019.122562.
  • Ren, L., X. Sun, X. Ji, S. Chen, D. Guo, and H. Huang. 2017. Enhancement of docosahexaenoic acid synthesis by manipulation of antioxidant capacity and prevention of oxidative damage in Schizochytrium sp. Bioresour. Technol. 223:141–148. doi:10.1016/j.biortech.2016.10.040.
  • Ren, L., X. Zhuang, S. Chen, X. Ji, and H. Huang. 2015. Introduction of ω-3 desaturase obviously changed the fatty acid profile and sterol content of Schizochytrium sp. J. Agr. Food Chem. 63 (44):9770–9776. doi:10.1021/acs.jafc.5b04238.
  • Ruan, Z., M. Zanotti, X. Wang, C. Ducey, and Y. Liu. 2012. Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresour. Technol. 110:198–205. doi:10.1016/j.biortech.2012.01.053.
  • Sahin, D., E. Tas, and U. H. Altindag. 2018. Enhancement of docosahexaenoic acid (DHA) production from Schizochytrium sp. S31 using different growth medium conditions. AMB Express 8 (1):7–14. doi:10.1186/s13568-018-0540-4.
  • Sakuradani, E., and S. Shimizu. 2009. Single cell oil production by Mortierella alpina. J. Biotechnol. 144 (1):31–36. doi:10.1016/j.jbiotec.2009.04.012.
  • Savchenko, O., J. Xing, M. Burrell, R. Burrell, and J. Chen. 2020. Impact of low-intensity pulsed ultrasound on the growth of Schizochytrium sp. for omega-3 production. Biotechnol. Bioeng. 118 (1):319–328. doi:10.1002/bit.27572.
  • Scott, S. D., R. E. Armenta, K. T. Berryman, and A. W. Norman. 2011. Use of raw glycerol to produce oil rich in polyunsaturated fatty acids by a Thraustochytrid. Enzyme Microb. Technol. 48 (3):267–272. doi:10.1016/j.enzmictec.2010.11.008.
  • Sevgili, H., S. Sezen, A. Yılayaz, Ö. Aktaş, F. Pak, I. M. Aasen, K. I. Reitan, M. Sandmann, S. Rohn, G. Turan, et al. 2019. Apparent nutrient and fatty acid digestibilities of microbial raw materials for rainbow trout (Oncorhynchus mykiss) with comparison to conventional ingredients. Algal Res. 42:101592. doi:10.1016/j.algal.2019.101592.
  • Singh, A., S. Wilson, and O. P. Ward. 1996. Docosahexaenoic acid (DHA) production by Thraustochytrium sp. ATCC 20892. World J. Microb. Biot. 12 (1):76–81. doi:10.1007/BF00327806.
  • Singh, D., C. J. Barrow, M. Puri, D. K. Tuli, and A. S. Mathur. 2016. Combination of calcium and magnesium ions prevents substrate inhibition and promotes biomass and lipid production in thraustochytrids under higher glycerol concentration. Algal Res. 15 (4):202–209. doi:10.1016/j.algal.2016.02.024.
  • Song, X., X. Zang, and X. Zhang. 2015. Production of high Docosahexaenoic acid by Schizochytrium sp. using low-cost raw materials from food industry. J. Oleo Sci. 64 (2):197–204. doi:10.5650/jos.ess14164.
  • Song, X., X. Zhang, C. Kuang, L. Zhu, and N. Guo. 2007. Optimization of fermentation parameters for the biomass and DHA production of Schizochytrium limacinum OUC88 using response surface methodology. Process Biochem. 42 (10):1391–1397.
  • Stefánsson, M. Ö., S. Baldursson, K. P. Magnússon, A. Eyþórsdóttir, and H. Einarsson. 2019. Isolation, characterization and biotechnological potentials of Thraustochytrids from Icelandic waters. Mar. Drugs 17 (8):449. doi:10.3390/md17080449.
  • Sun, X. M., L. J. Ren, X. J. Ji, and H. Huang. 2018c. Enhancing biomass and lipid CrossMark accumulation in the microalgae Schizochytrium sp by addition of fulvic acid and EDTA. AMB Express 269 (8):32–39.
  • Sun, X. M., L. J. Ren, X. J. Ji, S. L. Chen, D. S. Guo, and H. Huang. 2016. Adaptive evolution of Schizochytrium sp. by continuous high oxygen stimulations to enhance docosahexaenoic acid synthesis. Bioresour. Technol. 211:374–381. doi:10.1016/j.biortech.2016.03.093.
  • Sun, X. M., L. J. Ren, Z. Q. Bi, X. J. Ji, Q. Y. Zhao, and H. Huang. 2018a. Adaptive evolution of microalgae Schizochytrium sp. under high salinity stress to alleviate oxidative damage and improve lipid biosynthesis. Bioresour. Technol. 267:438–444. doi:10.1016/j.biortech.2018.07.079.
  • Sun, X. M., L. J. Ren, Z. Q. Bi, X. J. Ji, Q. Y. Zhao, L. Jiang, and H. Huang. 2018b. Development of a cooperative two-factor adaptive-evolution method to enhance lipid production and prevent lipid peroxidation in Schizochytrium sp. Biotechnol. Biofuels 11 (1):65. doi:10.1186/s13068-018-1065-4.
  • Tavares, S., T. Grotkjær, T. Obsen, R. P. Haslam, J. A. Napier, and N. Gunnarsson. 2011. Metabolic engineering of saccharomyces cerevisiae for production of Eicosapentaenoic acid, using a novel Δ5-desaturase from Paramecium tetraurelia. Appl. Environ. Microb. 77 (5):1854–1861. doi:10.1128/AEM.01935-10.
  • Till, B. E., J. A. Huntington, K. E. Kliem, J. Taylor-Pickard, and L. A. Sinclair. 2020. Long term dietary supplementation with microalgae increases plasma docosahexaenoic acid in milk and plasma but does not affect plasma 13,14-dihydro-15-keto PGF(2 alpha) concentration in dairy cows. J. Dairy Res. 87 (PII S002202991900102X1):14–22. doi:10.1017/S002202991900102X.
  • Wang, D. S., X. J. Yu, X. Y. Zhu, Z. Wang, H. J. Li, and Z. P. Wang. 2019a. Transcriptome mechanism of utilizing corn steep liquor as the sole nitrogen resource for lipid and DHA biosynthesis in marine oleaginous protist Aurantiochytrium sp. Biomolecules 9 (11):695. doi:10.3390/biom9110695.
  • Wang, F., Y. Bi, J. Diao, M. Lv, J. Cui, L. Chen, and W. Zhang. 2019b. Metabolic engineering to enhance biosynthesis of both docosahexaenoic acid and odd-chain fatty acids in Schizochytrium sp. S31. Biotechnol. Biofuels 12 (1):141–154. doi:10.1186/s13068-019-1484-x.
  • Wang, K., T. Sun, J. Cui, L. Liu, Y. Bi, G. Pei, L. Chen, and W. Zhang. 2018. Screening of chemical modulators for lipid accumulation in Schizochytrium sp. S31. Bioresour. Technol. 260:124–129. doi:10.1016/j.biortech.2018.03.104.
  • Wang, Q., H. Ye, Y. Xie, Y. He, B. Sen, and G. Wang. 2019c. Culturable diversity and lipid production profile of labyrinthulomycete protists isolated from coastal mangrove habitats of china. Mar. Drugs 17 (5):268–285. doi:10.3390/md17050268.
  • Wang, S., X. Wang, Y. Tian, and Y. Cui. 2020. Nutrient recovery from tofu whey wastewater for the economical production of docosahexaenoic acid by Schizochytrium sp. S31. Sci. Total Environ. 710:136448. doi:10.1016/j.scitotenv.2019.136448.
  • Xie, Y., and G. Wang. 2015. Mechanisms of fatty acid synthesis in marine fungus-like protists. Appl. Microbiol. Biot. 99 (20):8363–8375. doi:10.1007/s00253-015-6920-7.
  • Xu, J., Y. Zhu, H. Li, L. Chen, W. Chen, M. Cui, L. Han, W. Hou, and D. Li. 2018. Alanine mother liquor as a nitrogen source for docosahexaenoic acid production by Schizochytrium sp. B4D1. Electron. J. Biotechnol. 35:10–17. doi:10.1016/j.ejbt.2018.06.002.
  • Xu, X., C. Huang, Z. Xu, H. Xu, Z. Wang, and X. Yu. 2020. The strategies to reduce cost and improve productivity in DHA production by Aurantiochytrium sp.: From biochemical to genetic respects. Appl. Microbiol. Biot. 104 (22):9433–9447. doi:10.1007/s00253-020-10927-y.
  • Yin, F., D. Guo, L. Ren, X. Ji, and H. Huang. 2018. Development of a method for the valorization of fermentation wastewater and algal-residue extract in docosahexaenoic acid production by Schizochytrium sp. Bioresour. Technol. 266:482–487. doi:10.1016/j.biortech.2018.06.109.
  • Yin, F., S. Zhu, D. Guo, L. Ren, X. Ji, H. Huang, and Z. Gao. 2019b. Development of a strategy for the production of docosahexaenoic acid by Schizochytrium sp. from cane molasses and algae-residue. Bioresour. Technol. 271:118–124. doi:10.1016/j.biortech.2018.09.114.
  • Yin, F., Y. Zhang, J. Jiang, D. Guo, S. Gao, and Z. Gao. 2019a. Efficient docosahexaenoic acid production by Schizochytrium sp. via a two-phase pH control strategy using ammonia and citric acid as pH regulators. Process Biochem. 77:1–7. doi:10.1016/j.procbio.2018.11.013.
  • Yokochi, T., D. Honda, T. Higashihara, and T. Nakahara. 1998. Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl. Microbiol. Biot. 49 (1):72–76. doi:10.1007/s002530051139.
  • Yu, R., A. Yamada, K. Watanabe, K. Yazawa, H. Takeyama, T. Matsunaga, and R. Kurane. 2000. Production of eicosapentaenoic acid by a recombinant marine cyanobacterium, Synechococcus sp. Lipids 35 (10):1061–1064. doi:10.1007/s11745-000-0619-6.
  • Zeb, L., X. Wang, W. L. Zheng, X. Teng, M. Shafiq, Y. Mu, Z. Chi, and Z. Xiu. 2019. Microwave-assisted three-liquid-phase salting-out extraction of docosahexaenoic acid (DHA)-rich oil from cultivation broths of Schizochytrium limacinium SR21. Food Bioprod. Process 118:237–247. doi:10.1016/j.fbp.2019.09.008.
  • Zeng, Y., X. Ji, M. Lian, L. Ren, L. Jin, P. Ouyang, and H. Huang. 2011. Development of a temperature shift strategy for efficient docosahexaenoic acid production by a marine fungoid protist, Schizochytrium sp. HX-308. Appl. Biochem. Biotech. 164 (3):249–255. doi:10.1007/s12010-010-9131-9.
  • Zhang, Y., K. Perry, V. A. Vinci, K. Powell, W. P. C. Stemmer, and S. B. Del Cardayré. 2002. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415 (6872):644–646. doi:10.1038/415644a.
  • Zhang, Y., Q. Min, J. Xu, K. Zhang, S. Chen, H. Wang, and D. Li. 2016. Effect of malate on docosahexaenoic acid production from Schizochytrium sp. B4D1. Electron. J. Biotechnol. 19:56–60. doi:10.1016/j.ejbt.2015.11.006.
  • Zhao, B., Y. Li, C. Li, H. Yang, and W. Wang. 2018. Enhancement of Schizochytrium DHA synthesis by plasma mutagenesis aided with malonic acid and zeocin screening. Appl. Microbiol. Biot. 102 (5):2351–2361. doi:10.1007/s00253-018-8756-4.
  • Zhao, M., C. Dai, X. Guan, and J. Tao. 2009. Genome shuffling amplifies the carbon source spectrum and improves arachidonic acid production in Diasporangium sp. Enzyme Microb. Technol. 45 (6–7):419–425. doi:10.1016/j.enzmictec.2009.08.012.
  • Zhao, X., L. Ren, D. Guo, W. Wu, X. Ji, and H. Huang. 2016. CFD investigation of Schizochytrium sp. impeller configurations on cell growth and docosahexaenoic acid synthesis. Bioprocess. Biosyst. Eng. 39 (8):1297–1304. doi:10.1007/s00449-016-1608-7.
  • Zinnai, A., C. Sanmartin, I. Taglieri, G. Andrich, and F. Venturi. 2016. Supercritical fluid extraction from microalgae with high content of LC-PUFAs. A case of study: Sc-CO2 oil extraction from Schizochytrium sp. J. Supercrit. Fluid 116:126–131. doi:10.1016/j.supflu.2016.05.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.