143
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of Mutating the Alanine Residue in the Consensus Pentapeptide on Biochemical and Structural Characteristics of Bacillus licheniformis Lipase

, , , , , , & show all

References

  • Bharathi, D., and G. Rajalakshmi. 2019. Microbial lipases: An overview of screening, production and purification. Biocatal. Agric. Biotechnol. 22:101368. doi:10.1016/j.bcab.2019.101368.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1–2):248–254. doi:10.1016/0003-2697(76)90527-3.
  • Cao, Y., and Y. L. Xiong. 2017. Binding of gallic acid and epigallocatechin gallate to heat-unfolded whey proteins at neutral pH alters radical scavenging activity of in vitro protein digests. J. Agric. Food Chem. 65 (38):8443–8450. doi:10.1021/acs.jafc.7b03006.
  • Case, D. A., J. T. Berryman, R. M. Betz, D. S. Ce Rutti, and P. A. Kollman. 2015. Amber 2015, University of California, San Francisco.
  • Chandra, P., S. R. Enespa, and P. K. Arora. 2020. Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Fact. 19 (1):169. doi:10.1186/s12934-020-01428-8.
  • Chen, A., Y. Li, J. Nie, B. McNeil, L. Jeffrey, Y. Yang, and Z. Bai. 2015. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods. Enzyme Microb. Technol. 78:74–83. doi:10.1016/j.enzmictec.2015.06.013.
  • Chen, Y., R. Liu, J. Li, Y. Wang, C. Guo, and X. Lü. 2023. Evaluation the selectivity of three lipases in the synthesis of 1-oleoyl-2-palmitoyl-3-linoleoylglycerol, an asymmetric triacylglycerol. Lwt 181:114754. doi:10.1016/j.lwt.2023.114754.
  • Cheng, M., C. Angkawidjaja, Y. Koga, and S. Kanaya. 2014. Calcium-independent opening of lid1 of a family I.3 lipase by a single Asp to Arg mutation at the calcium-binding site. Protein Eng. Des. Sel. 27 (5):169–176. doi:10.1093/protein/gzu009.
  • Eggert, T., G. Pencreac’h, I. Douchet, R. Verger, and K. E. Jaeger. 2000. A novel extracellular esterase from Bacillus subtilis and its conversion to a monoacylglycerol hydrolase. Eur. J. Biochem. 267:6459–6469. doi:10.1046/j.1432-1327.2000.01736.x.
  • Fang, Z., J. Zhang, B. Liu, G. Du, and J. Chen. 2015. Insight into the substrate specificity of keratinase KerSMD from Stenotrophomonas maltophilia by site-directed mutagenesis studies in the S1 pocket. RSC Adv. 5 (91):74953–74960. doi:10.1039/C5RA12598G.
  • Guo, J., Z. Rao, T. Yang, Z. Man, M. Xu, X. Zhang, and S. T. Yang. 2015. Enhancement of the thermostability of Streptomyces kathirae SC-1 tyrosinase by rational design and empirical mutation. Enzyme Microb. Technol. 77:54–60. doi:10.1016/j.enzmictec.2015.06.002.
  • Gupta, R., N. Gupta, and P. Rathi. 2004. Bacterial lipases: An overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64 (6):763–781. doi:10.1007/s00253-004-1568-8.
  • Haki, G. D., and S. K. Rakshit. 2003. Developments in industrially important thermostable enzymes: A review. Bioresour. Technol. 89 (1):17–34. doi:10.1016/S0960-8524(03)00033-6.
  • Haskard, C. A., and E. C. Y. Li-Chan. 1998. Hydrophobicity of bovine serum albumin and ovalbumin determined using uncharged (PRODAN) and anionic (ANS-) fluorescent probes. J. Agr. Food Chem. 46 (7):2671–2677. doi:10.1021/jf970876y.
  • Holm, C., R. C. Davis, T. Osterlunda, M. C. Schotz, and G. Fredrikson. 1994. Identification of the active site serine of hormone-sensitive lipase by site-directed mutagenesis. FEBS Lett. 344 (2–3):234–238. doi:10.1016/0014-5793(94)00403-X.
  • Jaeger, K.-E., and T. Eggert. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13 (4):390–397. doi:10.1016/S0958-1669(02)00341-5.
  • Kaur, G., A. Singh, R. Sharma, V. Sharma, S. Verma, and P. K. Sharma. 2016. Cloning, expression, purification and characterization of lipase from Bacillus licheniformis, isolated from hot spring of Himachal Pradesh, India. 3 Biotech. 6 (1):49. doi:10.1007/s13205-016-0369-y.
  • Kolling, D. J., J. B. Bertoldo, F. C. Brod, J. Vernal, H. Terenzi, and A. C. Arisi. 2010. Biochemical and structural characterization of two site-directed mutants of Staphylococcus xylosus lipase. Mol. Biotechnol. 46 (2):168–175. doi:10.1007/s12033-010-9282-5.
  • Li, D., Y. Zhao, X. Wang, H. Tang, N. Wu, F. Wu, D. Yu, and W. Elfalleh. 2020. Effects of (+)-catechin on a rice bran protein oil-in-water emulsion: Droplet size, zeta-potential, emulsifying properties, and rheological behavior. Food Hydrocoll. 98:105306. doi:10.1016/j.foodhyd.2019.105306.
  • Li, L., S. Zhang, W. Wu, W. Guan, Z. Deng, and H. Qiao. 2019. Enhancing thermostability of Yarrowia lipolytica lipase 2 through engineering multiple disulfide bonds and mitigating reduced lipase production associated with disulfide bonds. Enzyme Microb. Technol. 126:41–49. doi:10.1016/j.enzmictec.2019.03.008.
  • Mabizela-Mokoena, N. B., S. W. Limani, I. Ncube, L. A. Piater, D. Litthauer, and M. B. Nthangeni. 2017. Genetic determinant of Bacillus pumilus lipase lethality and its application as positive selection cloning vector in Escherichia coli. Protein Expr. Purif. 137:43–51. doi:10.1016/j.pep.2017.06.013.
  • Madan, B., and P. Mishra. 2014. Directed evolution of Bacillus licheniformis lipase for improvement of thermostability. Biochem. Eng. J. 91:276–282. doi:10.1016/j.bej.2014.08.022.
  • Malekabadi, S., A. Badoei-Dalfard, and Z. Karami. 2018. Biochemical characterization of a novel cold-active, halophilic and organic solvent-tolerant lipase from B. licheniformis KM12 with potential application for biodiesel production. Int. J. Biol. Macromol. 109:389–398. doi:10.1016/j.ijbiomac.2017.11.173.
  • Malik, M. A., H. K. Sharma, and C. S. Saini. 2016. Effect of removal of phenolic compounds on structural and thermal properties of sunflower protein isolate. J. Food Sci. Technol. 53 (9):3455–3464. doi:10.1007/s13197-016-2320-y.
  • Matsumae, H., and T. Shibatani. 1994. Purification and characterization of the lipase from Serratia marcescens Sr41 8000 responsible for asymmetric hydrolysis of 3-phenylglycidic acid esters. J. Ferment. Bioeng. 77 (2):152–158. doi:10.1016/0922-338X(94)90315-8.
  • Miller, B. R., 3rd, T. D. Jr. McGee, J. M. Swails, N. Homeyer, H. Gohlke, and A. E. Roitberg. 2012. Mmpbsa.Py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 8 (9):3314–3321. doi:10.1021/ct300418h.
  • Mohammadi, M., Z. Sepehrizadeh, A. Ebrahim-Habibi, A. R. Shahverdi, M. A. Faramarzi, and N. Setayesh. 2016. Enhancing activity and thermostability of lipase a from Serratia marcescens by site-directed mutagenesis. Enzyme Microb. Technol. 93-94:18–28. doi:10.1016/j.enzmictec.2016.07.006.
  • Niyonzima, F. N., and S. S. More. 2015. Coproduction of detergent compatible bacterial enzymes and stain removal evaluation. J. Basic Microbiol. 55 (10):1149–1158. doi:10.1002/jobm.201500112.
  • Ramyasree, S., and J. R. Dutta. 2013. The effect of process parameters in enhancement of lipase production by co-culture of lactic acid bacteria and their mutagenesis study. Biocatal. Agric. Biotechnol. 2 (4):393–398. doi:10.1016/j.bcab.2013.08.002.
  • Ranjbar, B., and P. Gill. 2009. Circular dichroism techniques: Biomolecular and nanostructural analyses- a review. Chem. Biol. Drug Des. 74 (2):101–120. doi:10.1111/j.1747-0285.2009.00847.x.
  • Razzak, M. A., and S.-J. Cho. 2022. Molecular characterization of capsaicin binding interactions with ovalbumin and casein. Food Hydrocoll. 133:107991. doi:10.1016/j.foodhyd.2022.107991.
  • Roe, D. R., and T. E. 3rd. Cheatham. 2013. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9 (7):3084–3095. doi:10.1021/ct400341p.
  • Sharma, R., Y. Chisti, and U. C. Banerjee. 2001. Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 19 (8):627–662. doi:10.1016/S0734-9750(01)00086-6.
  • Sharma, S., P. Dogra, G. S. Chauhan, and S. S. Kanwar. 2014. Synthesis of alkyl coumarate esters by celite-bound lipase of Bacillus licheniformis SCD11501. J. Mol. Catal. B 101:80–86. doi:10.1016/j.molcatb.2013.12.017.
  • Shu, Z.-Y., H. Jiang, R.-F. Lin, Y.-M. Jiang, L. Lin, and J.-Z. Huang. 2010. Technical methods to improve yield, activity and stability in the development of microbial lipases. J. Mol. Catal. B 62 (1):1–8. doi:10.1016/j.molcatb.2009.09.003.
  • Tang, T., C. Yuan, H. T. Hwang, X. Zhao, D. Ramkrishna, D. Liu, and A. Varma. 2015. Engineering surface hydrophobicity improves activity of Bacillus thermocatenulatus lipase 2 enzyme. Biotechnol. J. 10 (11):1762–1769. doi:10.1002/biot.201500011.
  • Thapa, S., H. Li, O. Joshua, S. Bhatti, F. C. Chen, K. A. Nasr, T. Johnson, and S. Zhou. 2019. Biochemical characteristics of microbial enzymes and their significance from industrial perspectives. Mol. Biotechnol. 61 (8):579–601. doi:10.1007/s12033-019-00187-1.
  • Tian, M., J. Fu, Z. Wang, C. Miao, P. Lv, D. He, Z. Li, T. Liu, M. Li, and W. Luo. 2021. Enhanced activity and stability of Rhizomucor miehei lipase by mutating N-linked glycosylation site and its application in biodiesel production. Fuel 304:121514. doi:10.1016/j.fuel.2021.121514.
  • Treichel, H., D. de Oliveira, M. A. Mazutti, M. Di Luccio, and J. V. Oliveira. 2009. A review on microbial lipases production. Food Bioprocess Technol. 3 (2):182–196. doi:10.1007/s11947-009-0202-2.
  • Vivek, K., G. S. Sandhia, and S. Subramaniyan. 2023. Purification and characterization of a psychrophilic lipase from Serratia marcescens VT 1 and its application in methyl ester synthesis. Bioresour. Technol. Rep. 22:101443. doi:10.1016/j.biteb.2023.101443.
  • Xie, J., M. Du, M. Shen, T. Wu, and L. Lin. 2019. Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from Mung bean (Vigna radiate). Food Chem. 270:243–250. doi:10.1016/j.foodchem.2018.07.103.
  • Yan, X., S. Liang, T. Peng, G. Zhang, Z. Zeng, P. Yu, D. Gong, and S. Deng. 2020. Influence of phenolic compounds on physicochemical and functional properties of protein isolate from Cinnamomum camphora seed kernel. Food Hydrocoll. 102:105612. doi:10.1016/j.foodhyd.2019.105612.
  • Yu, C., B. Peng, T. Luo, and Z. Deng. 2023. Bound lipase: An important form of lipase in rice bran (Oryza sativa). Food Sci. Hum. Wellness 12 (5):1779–1787. doi:10.1016/j.fshw.2023.02.030.
  • Yu, L., W. Yang, J. Sun, C. Zhang, J. Bi, and Q. Yang. 2015. Preparation, characterisation and physicochemical properties of the phosphate modified peanut protein obtained from Arachin Conarachin L. Food Chem. 170:169–179. doi:10.1016/j.foodchem.2014.08.047.
  • Zhang, X., L. Wang, Z. Chen, Y. Li, X. Luo, and Y. Li. 2019. Effect of electron beam irradiation on the structural characteristics and functional properties of rice proteins. RSC Adv. 9 (24):13550–13560. doi:10.1039/C8RA10559F.
  • Zhao, J., S. Liu, Y. Gao, M. Ma, X. Yan, D. Cheng, D. Wan, Z. Zeng, P. Yu, and D. Gong. 2021. Characterization of a novel lipase from Bacillus licheniformis NCU CS-5 for applications in detergent industry and biodegradation of 2,4-D butyl ester. Int. J. Biol. Macromol. 176:126–136. doi:10.1016/j.ijbiomac.2021.01.214.
  • Zhao, J., M. Ma, X. Yan, G. Zhang, J. Xia, G. Zeng, W. Tian, X. Bao, Z. Zeng, P. Yu, et al. 2022. Expression and characterization of a novel lipase from Bacillus licheniformis NCU CS-5 for application in enhancing fatty acids flavor release for low-fat cheeses. Food Chem. 368:130868. doi:10.1016/j.foodchem.2021.130868.
  • Zhao, L.-L., J.-H. Xu, J. Zhao, J. Pan, and Z.-L. Wang. 2008. Biochemical properties and potential applications of an organic solvent-tolerant lipase isolated from Serratia marcescens ECU1010. Process Biochem. 43 (6):626–633. doi:10.1016/j.procbio.2008.01.023.
  • Zhou, Q., J. Huang, L. Hao, Y. Geng, C. Xu, Z. Zhou, J. Tang, R. Zhou, and Y. Shen. 2022. Hydrophobicity effects of γ‑Glutamyl transpeptidase-responsive polymers on the catalytic activity and transcytosis efficacy. Bioconjug. Chem. 33 (11):2132–2142. doi:10.1021/acs.bioconjchem.2c00391.
  • Zhu, K., A. Jutila, E. Tuominen, S. A. Patkar, A. Svendsen, and P. Kinnunen. 2001. Impact of the tryptophan residues of Humicola lanuginosa lipase on its thermal stability. Biochim. Biophys. Acta 1547 (2):329–338. doi:10.1016/S0167-4838(01)00198-4.
  • Zhu, Y., H. Liu, C. Qiao, L. Li, Z. Jiang, A. Xiao, and H. Ni. 2017. Characterization of an arylsulfatase from a mutant library of Pseudoalteromonas carrageenovora arylsulfatase. Int. J. Biol. Macromol. 96:370–376. doi:10.1016/j.ijbiomac.2016.12.014.
  • Zhu, Y., C. Qiao, H. Li, L. Li, A. Xiao, H. Ni, and Z. Jiang. 2018. Improvement thermostability of Pseudoalteromonas carrageenovora arylsulfatase by rational design. Int. J. Biol. Macromol. 108:953–959. doi:10.1016/j.ijbiomac.2017.11.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.