160
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Nutraceutical Augmentation of Soybean Products Using Microbial β-Glucosidases

& ORCID Icon

References

  • Abdella, A., A. F. El-Baz, I. A. Ibrahim, E. E. Mahrous, and S. Yang. 2017. Biotransformation of soy flour isoflavones by Aspergillus niger NRRL 3122 β-glucosidase enzyme. Nat. Prod. Res. 32 (20):2382–2391. doi:10.1080/14786419.2017.1413569.
  • Andres, S., K. Abraham, K. E. Appel, and A. Lampen. 2011. Risks and benefits of dietary isoflavones for cancer. Crit. Rev. Toxicol. 41 (6):463–506. doi:10.3109/10408444.2010.541900.
  • Angelotti, J. A. F., F. F. G. Dias, H. H. Sato, P. Fernandes, V. M. Nakajima, and J. Macedo. 2020. Improvement of aglycone content in soy isoflavones extract by free and immobilized β-glucosidase and their effects in lipid accumulation. Appl. Biochem. Biotechnol. 192 (3):734–750. doi:10.1007/s12010-020-03351-5.
  • Artinez-Villaluenga, C., M. I. Torino, V. Martín, R. Arroyo, P. Garcia-Mora, I. Estrella, C. Vidal-Valverde, J. M. Rodriguez, and J. Frias. 2012. Multifunctional properties of soymilk fermented by Enterococcus faecium strains isolated from raw soymilk. J. Agric. Food Chem. 60 (41):10235–10244. doi:10.1021/jf302751m.
  • Barnes, S. 2010. The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphat Res. Biol. 8 (1):89–98. doi:10.1089/lrb.2009.0030.
  • Baú, T. R., S. Garcia, and E. I. Ida. 2015. Changes in soymilk during fermentation with kefir culture: Oligosaccharides hydrolysis and isoflavone aglycone production. Int. J. Food Sci. Nutr. 66 (8):845–850. doi:10.3109/09637486.2015.1095861.
  • Champagne, C. P., T. A. Tompkins, N. D. Buckley, and J. M. Green-Johnson. 2010. Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isoflavone and B-vitamin content of a fermented soy beverage. Food Microbiol. 27 (7):968–972. doi:10.1016/j.fm.2010.06.003.
  • Chang, F., S. Xue, X. Xie, W. Fang, Z. Fang, Y. Xiao, and J. B. I. B. Ioeng. 2017. Carbohydrate-binding module assisted purification and immobilization of β-glucosidase onto cellulose and application in hydrolysis of soybean isoflavone glycosides. J. Biosci. Bioeng. 125 (2):185–191. doi:10.1016/j.jbiosc.2017.09.001.
  • Chang, J., Y. Lee, S. Fang, D. Park, and Y. Choi. 2013. Hydrolysis of isoflavone glycoside by immobilization of β-glucosidase on a chitosan-carbon in two-phase system. Int. J. Biol. Macromol. 61:465–470. doi:10.1016/j.ijbiomac.2013.08.014.
  • Chen, C., S. Zhao, G. Hao, H. Yu, H. Tian, and G. Zhao. 2017. Role of lactic acid bacteria on the yogurt flavour: A review. Int. J. Food Pro. 20 (1):S316–S330. doi:10.1080/10942912.2017.1295988.
  • Chen, K. I., Y. Yao, H. J. Chen, Y. C. Lo, R. C. Yu, and K. C. Cheng. 2016. Hydrolysis of isoflavone in black soy milk using cellulose bead as enzyme immobilizer. J. Food Drug. Anal. 24 (4):788–795. doi:10.1016/j.jfda.2016.03.007.
  • Chen, L. R., N. Y. Ko, and K. H. Chen. 2019. Isoflavone supplements for menopausal women: A systematic review. Nutrients 11 (11):2649. doi:10.3390/nu11112649.
  • Cheng, K. C., J. T. Lin, J. Y. Wu, and W. H. Liu. 2010. Isoflavone conversion of Black soybean isoflavone conversion of Black soybean by immobilized Rhizopus spp. Food Biotechnol. 24 (4):312–331. doi:10.1080/08905436.2010.524459.
  • Chien, H., H. Huang, and C. Chou. 2006. Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food Microbiol. 23 (8):772–778. doi:10.1016/j.fm.2006.01.002.
  • Cho, K. M., S. Y. Hong, R. K. Math, J. H. Lee, D. M. Kambiranda, J. M. Kim, S. A. Islam, M. G. Yun, J. J. Cho, W. J. Lim, et al. 2009. Biotransformation of phenolics (isoflavones, flavanols and phenolic acids) during the fermentation of cheonggukjang by Bacillus pumilus HY1. Food Chem. 114 (2):413–419. doi:10.1016/j.foodchem.2008.09.056.
  • Chua, J., Y. Lu, and S. Liu. 2017. Biotransformation of soy whey into soy alcoholic beverage by four commercial strains of Saccharomyces cerevisiae. Int. J. Food Microbiol. 262:14–22. doi:10.1016/j.ijfoodmicro.2017.09.007.
  • Chua, J., Y. Lu, and S. Liu. 2018. Evaluation of five commercial non-Saccharomyces yeasts in fermentation of soy (tofu) whey into an alcoholic beverage. Food Microbiol. 76:533–542. doi:10.1016/j.fm.2018.07.016.
  • Chun, J., M. K. Gyoung, K. W. Lee, I. D. Choi, G. Kwon, J. Park, S. Jeong, J. Kim, and J. H. Kim. 2007. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria. J. Food Sci. 72 (2):39–44. doi:10.1111/j.1750-3841.2007.00276.x.
  • Chun, J., J. Sang, and J. Hwan. 2008. Enrichment of isoflavone aglycones in soymilk by fermentation with single and mixed cultures of Streptococcus infantarius 12 and Weissella sp. 4. Food Chem. 109:278–284. doi:10.1016/j.foodchem.2007.12.024.
  • da Silva, L. H., R. M. S. Celeghini, and Y. K. Chang. 2011. Effect of the fermentation of whole soybean flour on the conversion of isoflavones from glycosides to aglycones. Food Chem. 128 (3):640–644. doi:10.1016/j.foodchem.2011.03.079.
  • Day, A. J., F. J. Canada, C. D. Juan, P. A. Kroon, R. Mclauchlan, C. B. Faulds, G. W. Plumb, M. R. A. Morgan, and G. Williamson. 2000. Dietary flavonoid and isoflavone glycosides are hydrolyzed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 468:166–170. doi:10.1016/S0014-5793(00)01211-4.
  • de Queirós, L. D., A. Rejane, A. de Ávila, A. V. Botaro, J. A. Macedo, and G. A. Macedo. 2020. Combined isoflavones biotransformation increases the bioactive and antioxidant capacity of soymilk. Appl. Microbiol. Biotechnol. 104:10019–10031. doi:10.1007/s00253-020-10986-1.
  • Delgado, L., C. M. Heckmann, F. di Pisa, L. Gourlay, and F. Paradisi. 2021. Release of soybean isoflavones by using a β-glucosidase from Alicyclobacillus herbarius. Chem. Biochem. 22 (7):1223–1231. doi:10.1002/cbic.202000688.
  • di Cagno, R., F. Mazzacane, C. G. Rizzello, O. Vincentini, M. Silano, G. Giuliani, M. de Angelis, and M. Gobbetti. 2010. Synthesis of isoflavone aglycones and equol in soy milks fermented by food-related lactic acid bacteria and their effect on human intestinal Caco-2 cells. J. Agric. Food Chem. 58 (19):10338–10346. doi:10.1021/jf101513r.
  • Donkor, O. N., and N. P. Shah. 2008. Production of β-glucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in soymilk. J. Food Sci. 73 (1):15–20. doi:10.1111/j.1750-3841.2007.00547.x.
  • Fang, N., S. Yu, and T. M. Badger. 2004. Comprehensive phytochemical profile of soy protein isolate. J. Agric. Food Chem. 52 (12):4012–4020. doi:10.1021/jf049842y.
  • Fang, W., J. Liu, Y. Hong, H. Peng, X. Zhang, B. Sun, and Y. Xiao. 2010. Cloning and characterization of a β-glucosidase from marine microbial metagenome with excellent glucose tolerance. J. Microbiol. Biotechnol. 20 (9):1351–1358. doi:10.4014/jmb.1003.03011.
  • Fang, W., R. Song, X. Zhang, X. Zhang, X. Zhang, X. Wang, Z. Fang, and Y. Xiao. 2014. Characterization of a novel β-glucosidase from Gongronella sp. W5 and its application in the hydrolysis of soybean isoflavone glycosides. J. Agric. Food Chem. 62:11688–11695. doi:10.1021/jf502850z.
  • Fang, W., Y. Yang, X. Zhang, Q. Yin, X. Zhang, X. Wang, Z. Fang, and X. Yazhong. 2016. Improve ethanol tolerance of β-glucosidase Bgl1A by semi-rational engineering for the hydrolysis of soybean isoflavone glycosides. J. Biotechnol. 227:64–71. doi:10.1016/j.jbiotec.2016.04.022.
  • Funaki, A., T. Waki, A. Noguchi, Y. Kawai, S. Yamashita, S. Takahashi, and T. Nakayama. 2015. Identification of a highly specific isoflavone 7-O-glucosyltransferase in the soybean (Glycine max (L .) Merr .). Plant Cell Physiol. 56 (8):1512–1520. doi:10.1093/pcp/pcv072.
  • Gaya, P., Á. Peirotén, M. Medina, J. M. Landete, M. Medina, and P. Gaya. 2016. Isoflavone metabolism by a collection of lactic acid bacteria and bifidobacteria with biotechnological interest. Int. J. Food Sci. Nutr. 67 (2):117–124. doi:10.3109/09637486.2016.1144724.
  • Georgetti, S. R., F. T. M. C. Vicentini, C. Y. Yokoyama, M. F. Borin, A. C. C. Spadaro, and M. J. V. Fonseca. 2009. Enhanced in vitro and in vivo antioxidant activity and mobilization of free phenolic compounds of soybean flour fermented with different β-glucosidase-producing fungi. J. Appl. Microbiol. 106 (2):459–466. doi:10.1111/j.1365-2672.2008.03978.x.
  • Gil, V., F. Pin, P. Manzanares, and V. Rojas. 2003. Acetate ester formation in wine by mixed cultures in laboratory fermentations. Int. J. Food Microbiol. 86:181–188. doi:10.1016/S0168-1605(03)00255-1.
  • Godse, R., H. Bawane, J. Tripathi, and R. Kulkarni. 2021. Unconventional β-glucosidases: A promising biocatalyst for industrial biotechnology. Appl. Biochem. Biotechnol. 193 (9):2993–3016. doi:10.1007/s12010-021-03568-y.
  • Guadamuro, L., A. B. Flórez, Á. Alegría, L. Vázquez, and B. Mayo. 2017. Characterization of four β-glucosidases acting on isoflavone-glycosides from Bifidobacterium pseudocatenulatum IPLA 36007. Food Res. Int. 100:522–528. doi:10.1016/j.foodres.2017.07.024.
  • Handa, C. L., F. S. de Lima, M. F. G. Guelfi, da Silva Fernandes, M. Georgetti, and E. I. Sandra Regina Ida. 2019. Parameters of the fermentation of soybean flour by Monascus purpureus or Aspergillus oryzae on the production of bioactive compounds and antioxidant activity. Food Chem. 271:274–283. doi:10.1016/j.foodchem.2018.07.188.
  • Hati, S., S. Vij, B. P. Singh, and S. Mandal. 2014. β-Glucosidase activity and bioconversion of isoflavones during fermentation of soymilk. J. Sci. Food. Agri 95 (1):216–220. doi:10.1002/jsfa.6743.
  • He, F., and J. Chen. 2013. Consumption of soybean, soy foods, soy isoflavones and breast cancer incidence: Differences between Chinese women and women in Western countries and possible mechanisms. Food Sci. Hum. Wellness 2 (3–4):146–161. doi:10.1016/j.fshw.2013.08.002.
  • Hu, S., D. Wang, and J. Hong. 2018. A simple method for beta-glucosidase immobilization and its application in soybean isoflavone glycosides hydrolysis. Biotechnol. Bioproc. Eng. 23 (1):39–48. doi:10.1007/s12257-017-0434-3.
  • Hwang, J., J. Wang, P. Morazzoni, H. N. Hodis, and A. Sevanian. 2003. The phytoestrogen equol increases nitric oxide availability by inhibiting superoxide production: An antioxidant mechanism for cell-mediated LDL modification. Free Radi. Biol. Med 34 (10):1271–1282. doi:10.1016/S0891-5849(03)00104-7.
  • Ito, J., H. Sahara, M. Kaya, Y. Hata, S. Shibasaki, K. Kawata, S. Ishida, C. Ogino, H. Fukuda, and A. Kondo. 2008. Characterization of yeast cell surface displayed Aspergillus oryzae β-glucosidase 1 high hydrolytic activity for soybean isoflavone. J. Mol. Cat. B 55:69–75. doi:10.1016/j.molcatb.2008.01.003.
  • Jeon, K. S., G. E. Ji, and I. K. Hwang. 2002. Assay of beta-glucosidase activity of Bifidobacteria and the hydrolysis of isoflavone glycosides by Bifidobacterium sp. Int-57 in soymilk fermentation. J. Microbiol. Biotechnol. 12 (1):8–13.
  • Kaya, M., J. Ito, A. Kotaka, K. Matsumura, H. Bando, H. Sahara, C. Ogino, S. Shibasaki, K. Kuroda, and M. Ueda. 2008. Isoflavone aglycones production from isoflavone glycosides by display of β-glucosidase from Aspergillus oryzae on yeast cell surface. Appl. Microbiol. Biotechnol. 79 (1):51–60. doi:10.1007/s00253-008-1393-6.
  • Kim, I. 2021. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants 10 (7):1064. doi:10.3390/antiox10071064.
  • Kim, B., S. Yeom, Y. Kim, and D.-K. Oh. 2012. Characterization of a β-glucosidase from Sulfolobus solfataricus for isoflavone glycosides. Biotechnol. Lett. 34:125–129. doi:10.1007/s10529-011-0739-9.
  • Kuchay, R. A. H. 2020. New insights into the molecular basis of lactase non-persistence/persistence: A brief review. Drug Discov Ther 14 (1):1–7. doi:10.5582/ddt.2019.01079.
  • Kudo, K., A. Watanabe, S. Ujiie, T. Shintani, and K. Gomi. 2015. Purification and enzymatic characterization of secretory glycoside hydrolase family 3 (GH3) aryl β-glucosidases screened from Aspergillus oryzae genome. J. Biosci. Bioeng 120 (6):614–623. doi:10.1016/j.jbiosc.2015.03.019.
  • Kuo, L., W. Cheng, R. Wu, C.-J. Huang, and K.-T. Lee. 2006. Hydrolysis of black soybean isoflavone glycosides by Bacillus subtilis natto. Appl. Microbiol. Biotechnol. 73 (1):314–320. doi:10.1007/s00253-006-0474-7.
  • Kuo, L. C., and K. T. Lee. 2008. Cloning, expression, and characterization of two β-glucosidases from isoflavone glycoside-hydrolyzing Bacillus subtilis natto. J. Agric. Food Chem. 56 (1):119–125. doi:10.1021/jf072287q.
  • Li, G., Y. Jiang, X. Fan, and Y. Liu. 2012. Molecular cloning and characterization of a novel β-glucosidase with high hydrolyzing ability for soybean isoflavone glycosides and glucose-tolerance from soil metagenomic library. Bioresour. Technol. 123:15–22. doi:10.1016/j.biortech.2012.07.083.
  • Li, S., Z. Jin, D. Hu, W. Yang, Y. Yan, X. Nie, J. Lin, Q. Zhang, D. Gai, Y. Ji, et al. 2020. Effect of solid-state fermentation with Lactobacillus casei on the nutritional value, isoflavones, phenolic acids and antioxidant activity of whole soybean flour. LWT Food Sci. Technol. 125:109264. doi:10.1016/j.lwt.2020.109264.
  • Lim, Y. J., B. Lim, H. Y. Kim, S. Kwon, and S. H. Eom. 2020. Enzyme and microbial technology deglycosylation patterns of isoflavones in soybean extracts inoculated with two enzymatically different strains of lactobacillus species. Enzyme Microb. Technol. 132:109394. doi:10.1016/j.enzmictec.2019.109394.
  • Lodha, D., S. Das, and S. Hati. 2021. Antioxidant activity, total phenolic content and biotransformation of isoflavones during soy lactic‐fermentations. J. Food Process. Preservat. 45 (6):e15583. doi:10.1111/jfpp.15583.
  • Lovabyta, N. S., J. A. Y. Jayus, and A. R. I. S. Nugraha. 2020. Bioconversion of isoflavones glycoside to aglycone during edamame (Glycine max) soygurt production using Streptococcus thermophillus FNCC40, Lactobacillus delbrueckii FNCC41, and L. plantarum FNCC26. Biodiversitas 21 (4):1358–1364. doi:10.13057/biodiv/d210412.
  • Maitan-Alfenas, G. P., L. G. D. A. Lage, M. N. D. Almeida, E. M. Visser, S. T. D. Rezende, and V. M. Guimarães. 2014. Hydrolysis of soybean isoflavones by Debaryomyces hansenii UFV-1 immobilised cells and free β-glucosidase. Food Chem. 146:429–436. doi:10.1016/j.foodchem.2013.09.099.
  • Malashree, L., P. Mudgil, S. S. Dagar, S. Kumar, and A. K. Puniya. 2012. β-glucosidase activity of lactobacilli for biotransformation of soy isoflavones. Food Biotechnol 26 (2):154–163. doi:10.1080/08905436.2012.670832.
  • Marazza, J. A., M. A. Nazereno, G. S. de Giori, and M. S. Garro. 2012. Enhancement of the antioxidant capacity of soymilk by fermentation with Lactobacillus rhamnosus. J Funct Foods 4:594–601. doi:10.1016/j.jff.2012.03.005.
  • Mase, T., S. Mori, and Y. Masaaki. 2004. Purification, characterization, and a potential application of β-glucosidase from Aspergillus pulverulentus YM-80. J. Appl. Glycosci. 51 (3):211–216. doi:10.5458/jag.51.211.
  • Masilamani, M., B. Ingelheim, U. States, and H. Sampson. 2012. Regulation of the immune response by soybean isoflavones. Immunol. Res. 54 (1):95–110. doi:10.1007/s12026-012-8331-5.
  • Matsuda, S., F. Norimoto, Y. Matsumoto, R. Ohba, Y. Teramoto, N. Ohta, and S. Ueda. 1994. Solubilization of a novel isoflavone glycoside-hydrolyzing β-glucosidase from Lactobacillus casei subsp. rhamnosus. J. Ferment. Bioeng. 77 (4):439–441. doi:10.1016/0922-338X(94)90021-3.
  • Nagino, T., M. Kano, N. Masuoka, C. Kaga, M. Anbe, K. Miyazaki, A. Tanaka, M. Isozaki, C. Suzuki, and C. Kasuga. 2015. Intake of a fermented soymilk beverage containing moderate levels of isoflavone aglycones enhances bioavailability of isoflavones in healthy premenopausal Japanese women: A double-blind, placebo-controlled, single-dose, crossover trial. Biosci. Microbiota Food Health 35 (1):9–17. doi:10.12938/bmfh.2015-011.
  • Otieno, D. O., J. F. Ashton, and N. P. Shah. 2006. Stability of isoflavone phytoestrogens in fermented soymilk with Bifidobacterium animalis Bb12 during storage at different temperatures. Int. J. Food Sci. Technol. 41:1182–1191. doi:10.1111/j.1365-2621.2006.01177.x.
  • Phadungcharoen, N., W. Winotapun, A. Khomniyawanit, F. Krataichan, and T. Rojanarata. 2019. Facile and green fabrication of biocatalytic chitosan beads by one-step genipin-mediated β-glucosidase immobilization for production of bioactive genistein. Sustain. Chem. Pharm. 14:100187. doi:10.1016/j.scp.2019.100187.
  • Pyo, Y., T. Lee, and Y. Lee. 2005. Enrichment of bioactive isoflavones in soymilk fermented with β-glucosidase-producing lactic acid bacteria. Food Res. Int. 38 (5):551–559. doi:10.1016/j.foodres.2004.11.008.
  • Raimondi, S., L. Roncaglia, M. D. Lucia, A. Amaretti, A. Leonardi, U. M. Pagnoni, and M. Rossi. 2009. Bioconversion of soy isoflavones daidzin and daidzein by Bifidobacterium strains. Appl. Microbiol. Biotechnol. 81 (5):943–950. doi:10.1007/s00253-008-1719-4.
  • Rizzo, G., and L. Baroni. 2018. Soy, soy foods and their role in vegetarian diets. Nutrients 10 (1):43. doi:10.3390/nu10010043.
  • Setchell, K., N. M. Brown, L. Zimmer-Nechemias, W. T. Brashear, B. E. Wolfe, A. S. Kirschner, and J. E. Heubi. 2018. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for. Am. J. Clin. Nutr. 76 (2):447–453. doi:10.1093/ajcn/76.2.447.
  • Sirilun, S., B. S. Sivamaruthi, P. Kesika, S. Peerajan, and C. Chaiyasut. 2017. Lactic acid bacteria mediated fermented soybean as a potent nutraceutical candidate. Asian Pac. J. Trop. Biomed. 7 (10):930–936. doi:10.1016/j.apjtb.2017.09.007.
  • Song, X., Y. Xue, Q. Wang, and X. Wu. 2011. Comparison of three thermostable β-glucosidases for application in the hydrolysis of soybean isoflavone glycosides. J. Agric. Food Chem. 59 (5):1954–1961. doi:10.1021/jf1046915.
  • Stradwick, L., D. Inglis, J. Kelly, and G. Pickering. 2017. Development and application of assay for determining β-glucosidase activity in human saliva. Flavour 6 (1). doi:10.1186/s13411-017-0054-z.
  • Sun, S. Y., H. S. Gong, K. Zhao, X. L. Wang, X. Wang, X. H. Zhao, B. Yu, and H. X. Wang. 2013. Co-inoculation of yeast and lactic acid bacteria to improve cherry wines sensory quality. Int. J. Food Sci. Technol. 48 (9):1783–1790. doi:10.1111/ijfs.12151.
  • Suo, H., Y. Qian, X. Feng, H. Wang, X. Zhao, and J.-L. Song. 2016. Free radical scavenging activity and cytoprotective effect of soybean milk fermented with Lactobacillus fermentum Zhao. J. Food Biochem. 40 (3):294–303. doi:10.1111/jfbc.12223.
  • Tsangalis, D., J. F. Ashton, A. E. J. McGill, and N. P. Shah. 2002. Enzymic transformation of isoflavone phytoestrogens in soymilk by β-glucosidase-producing Bifidobacteria. J. Food Sci. 67 (8):3104–3113. doi:10.1111/j.1365-2621.2002.tb08866.x.
  • Vieille, C., and G. J. Zeikus. 2001. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65 (1):1–43. doi:10.1128/MMBR.65.1.1-43.2001.
  • Walle, T., A. M. Browning, L. L. Steed, S. G. Reed, and U. K. Walle. 2005. Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans. J. Nutr. 135 (1):48–52. doi:10.1093/jn/135.1.48.
  • Xie, Y., Y. Wang, Y. Han, J. Zhang, S. Wang, S. Lu, H. Wang, F. Lu, and L. Jia. 2022. Complete genome sequence of a novel Lactobacillus paracasei TK1501 and its application in the biosynthesis of isoflavone aglycones. Foods 11 (18):2807. doi:10.3390/foods11182807.
  • Xue, Y., J. Yu, and X. Song. 2009. Hydrolysis of soy isoflavone glycosides by recombinant β-glucosidase from hyperthermophile Thermotoga maritima. J. Ind. Microbiol. Biotechnol. 36 (11):1401–1408. doi:10.1007/s10295-009-0626-8.
  • Yaakob, H., R. A. Malek, M. Misson, M. Fauzi, A. Jalil, and M. R. Sarmidi. 2011. Optimization of isoflavone production from fermented soybean using response surface methodology. Food Sci. Biotechnol. 20 (6):1525–1531. doi:10.1007/s10068-011-0211-6.
  • Yang, L., Z. S. Ning, C. Z. Shi, Z. Y. Chang, and L. Y. Huan. 2004. Purification and characterization of an isoflavone-conjugates-hydrolyzing β-glucosidase from endophytic bacterium. J. Agric. Food Chem. 52 (7):1940–1944. doi:10.1021/jf030476c.
  • Yeom, S., B. Kim, Y. Kim, and D. Oh. 2012. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus. J. Agric. Food Chem. 60 (6):1535–1541. doi:10.1021/jf204432g.
  • You, H. J., H. J. Ahn, J. Y. Kim, Q. Q. Wu, and G. E. Ji. 2015. High expression of β-glucosidase in Bifidobacterium bifidum BGN4 and application in conversion of isoflavone glucosides during fermentation of soy milk. J. Microbiol. Biotechnol. 25 (4):469–478. doi:10.4014/jmb.1408.08013.
  • Yuksekdag, Z., B. Cinar Acar, B. Aslim, and U. Tukenmez. 2017. β-Glucosidase activity and bioconversion of isoflavone glycosides to aglycones by potential probiotic bacteria. Int. J. Food Prop. 20 (Sup3):S2878–S2886. doi:10.1080/10942912.2017.1382506.
  • Zhang, B., Z. Yang, W. Huang, J. O. Omedi, F. Wang, Q. Zou, and J. Zheng. 2019. Isoflavone aglycones enrichment in soybean sourdough bread fermented by lactic acid bacteria strains isolated from traditional Qu starters: Effects on in vitro gastrointestinal digestion, nutritional, and baking properties. Cereal Chem. 96:129–141. doi:10.1002/cche.10116.
  • Zheng, X., S.-K. Lee, and O. K. Chun. 2016. Soy isoflavones and osteoporotic bone loss: A review with an emphasis on modulation of bone remodeling. J. Med. Food 19 (1):1–14. doi:10.1089/jmf.2015.0045.
  • Zhu, Y., Z. Wang, and L. Zhang. 2019. Optimization of lactic acid fermentation conditions for fermented tofu whey beverage with high-isoflavone aglycones. LWT Food Sci. Technol. 111:211–217. doi:10.1016/j.lwt.2019.05.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.