113
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fermentative Bioconversion of β-Glucoside Like Isoflavones is a Better Indicator of β-Glucoside Hydrolysing Capability in Probiotic Lactic Acid Bacteria (LAB) Due to the Predominant Phosphoglucosidase Activity

ORCID Icon, ORCID Icon, , , , & show all

References

  • Aboushanab, S. A., S. M. Khedr, I. F. Gette, I. G. Danilova, N. A. Kolberg, G. A. Ravishankar, R. R. Ambati, and E. G. Kovaleva. 2021. Isoflavones derived from plant raw materials: Bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Crit. Rev. Food Sci. Nutr. 63:261–287. doi:10.1080/10408398.2021.1946006.
  • Acin-Albiac, M., P. Filannino, K. Arora, A. Da Ros, M. Gobbetti, and R. Di Cagno. 2021. Role of lactic acid bacteria phospho-β-Glucosidases during the fermentation of cereal by-products. Foods 10 (1):97. doi:10.3390/foods10010097.
  • Angelotti, J. A. F., F. F. G. Dias, H. H. Sato, P. Fernandes, V. M. Nakajima, and J. Macedo. 2020. Improvement of aglycone content in soy isoflavones extract by free and immobilized Β-glucosidase and their effects in lipid accumulation. Appl. Biochem. Biotechnol. 192:734–750. doi:10.1007/s12010-020-03351-5.
  • Aponte, M., N. Murru, and M. Shoukat. 2020. Therapeutic, prophylactic, and functional use of probiotics: A current perspective. Front. Microbiol. 11:562048. doi:10.3389/fmicb.2020.562048.
  • Baek, M., F. DiMaio, I. Anishchenko, J. Dauparas, S. Ovchinnikov, G. R. Lee, J. Wang, Q. Cong, L. N. Kinch, R. D. Schaeffer, et al. 2021. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:871–876. doi:10.1126/science.abj87546557.
  • Biernat, K. A., B. Li, and M. R. Redinbo. 2018. Microbial unmasking of plant glycosides. MBio 9 (1). doi:10.1128/mBio.02433-17.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1–2):248–254. doi:10.1016/0003-2697(76)90527-3.
  • Carver, T., S. R. Harris, M. Berriman, J. Parkhill, and J. A. McQuillan. 2012. Artemis: An integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28 (4):464–469. doi:10.1093/bioinformatics/btr703.
  • Chun, J., W. J. Jeong, J.-S. Kim, J. Lim, C.-S. Park, D. Y. Kwon, I. Choi, and J. H. Kim. 2008. Hydrolysis of isoflavone glucosides in soymilk fermented with single or mixed cultures of Lactobacillus paraplantarum KM, Weissella sp. 33, and Enterococcus faecium 35 isolated from humans. J. Microbiol. Biotechnol. 18:573–578.
  • Coulon, S., P. Chemardin, Y. Gueguen, A. Arnaud, and P. Galzy. 1998. Purification and characterization of an intracellular β-glucosidase from Lactobacillus casei ATCC 393. Appl. Biochem. Biotechnol. 74 (2):105–114. doi:10.1007/BF02787177.
  • Delgado, S., L. Guadamuro, A. B. Flórez, L. Vázquez, and B. Mayo. 2018. Fermentation of commercial soy beverages with lactobacilli and bifidobacteria strains featuring high β-glucosidase activity. Innov. Food Sci. Emerg. Technol. 51:148–155 doi:10.1016/j.ifset.2018.03.018.
  • Domon, K., M. Puripat, K. Fujiyoshi, M. Hatanaka, S. A. Kawashima, K. Yamatsugu, and M. Kanai. 2020. Catalytic chemoselective O-Phosphorylation of alcohols. ACS Cent. Sci. 6 (2):283–292. doi:10.1021/acscentsci.9b01272.
  • Erginkaya, Z., and G. Konuray-Altun. 2022. Potential biotherapeutic properties of lactic acid bacteria in foods. Food Biosci. 46:101544. doi:10.1016/j.fbio.2022.101544.
  • Han, S., Y. Lu, J. Xie, Y. Fei, G. Zheng, Z. Wang, J. Liu, L. Lv, Z. Ling, B. Berglund, et al. 2021. Probiotic gastrointestinal transit and colonization after oral administration: A long journey. Front. Cell. Infect. Microbiol. 11:609722. doi:10.3389/fcimb.2021.609722.
  • Hati, S., D. W. Ningtyas, J. K. Khanuja, and S. Prakash. 2020. β-glucosidase from almonds and yoghurt cultures in the biotransformation of isoflavones in soy milk. Food Biosci. 34:100542. doi:10.1016/j.fbio.2020.100542.
  • Hsiao, Y.-H., C.-T. Ho, and M.-H. Pan. 2020. Bioavailability and health benefits of major isoflavone aglycones and their metabolites. J. Funct. Foods 74:104164. doi:10.1016/j.jff.2020.104164.
  • Hsieh, M.-C., and T. L. Graham. 2001. Partial purification and characterization of a soybean β-glucosidase with high specific activity towards isoflavone conjugates. Phytochemistry 58 (7):995–1005. doi:10.1016/S0031-9422(01)00380-6.
  • Iqbal, J., B. Abbasi, A. Khalil, B. Ali, T. Mahmood, S. Kanwal, S. Shah, and W. Ali. 2018. Dietary isoflavones, the modulator of breast carcinogenesis: Current landscape and future perspectives. Asian Pac. J. Trop. Med. 11 (3):186. doi:10.4103/1995-7645.228432.
  • Jayachandran, M., and B. Xu. 2019. An insight into the health benefits of fermented soy products. Food Chem. 271:362–371. doi:10.1016/j.foodchem.2018.07.158.
  • Kaur, J., A. Kumar, and J. Kaur. 2018. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int. J. Biol. Macromol. 106:803–822. doi:10.1016/j.ijbiomac.2017.08.080.
  • Kumar, V., A. Rani, A. K. Dixit, D. Pratap, and D. Bhatnagar. 2010. A comparative assessment of total phenolic content, ferric reducing-anti-oxidative power, free radical-scavenging activity, vitamin C and isoflavones content in soybean with varying seed coat colour. Food Res. Int. 43 (1):323–328. doi:10.1016/j.foodres.2009.10.019.
  • Lambert, M. N. T., and P. B. Jeppesen. 2018. Isoflavones and bone health in perimenopausal and postmenopausal women. Curr. Opin. Clin. Nutr. Metab. Care 21:475–480. doi:10.1097/MCO.0000000000000513.
  • Li, S., Z. Jin, D. Hu, W. Yang, Y. Yan, X. Nie, J. Lin, Q. Zhang, D. Gai, Y. Ji, et al. 2020. Effect of solid-state fermentation with Lactobacillus casei on the nutritional value, isoflavones, phenolic acids and antioxidant activity of whole soybean flour. LWT 125:109264. doi:10.1016/j.lwt.2020.109264.
  • Liu, Y., M. Grimm, W.-T. Dai, M.-C. Hou, Z.-X. Xiao, and Y. Cao. 2020. CB-Dock: A web server for cavity detection-guided protein-ligand blind docking. Acta Pharmacol. Sin. 41:138–144. doi:10.1038/s41401-019-0228-6.
  • Mahapatra, S., A. S. Vickram, T. B. Sridharan, R. Parameswari, and M. R. Pathy. 2016. Screening, production, optimization and characterization of β-glucosidase using microbes from shellfish waste. 3 Biotech 6 (2):213. doi:10.1007/s13205-016-0530-7.
  • Michlmayr, H., C. Schümann, N. M. B. B. Silva, K. D. da Kulbe, and A. M. Del Hierro. 2010. Isolation and basic characterization of a beta-glucosidase from a strain of Lactobacillus brevis isolated from a malolactic starter culture. J. Appl. Microbiol. 108:550–559. doi:10.1111/j.1365-2672.2009.04461.x.
  • Pettersen, E. F., T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin. 2004. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25:1605–1612. doi:10.1002/jcc.20084.
  • Saied, N., and M. Abd-Rabo. 2021. Effects of soy isoflavone on cardiac dysfunction in geripause-like rats: Comparisons with hormone-replacement therapy. Egypt. Pharmaceut. J. 20 (3):232. doi:10.4103/epj.epj_25_21.
  • Sasi, M., S. Kumar, M. Hasan, E. Garcia-Gutierrez, S. Kumari, O. Prakash, L. Nain, A. Sachdev, and A. Dahuja. 2022. Current trends in the development of soy-based foods containing probiotics and paving the path for soy-synbiotics. Crit. Rev. Food Sci. Nutr. 1–19. doi:10.1080/10408398.2022.2078272.
  • Seidle, H. F., I. Marten, O. Shoseyov, and R. E. Huber. 2004. Physical and kinetic properties of the family 3 beta-glucosidase from Aspergillus niger which is important for cellulose breakdown. Protein J. 23:11–23. doi:10.1023/b:jopc.0000016254.58189.2a.
  • Sohn, S. I., S. Pandian, Y. J. Oh, H. J. Kang, W. S. Cho, and Y. S. Cho. 2021. Metabolic engineering of isoflavones: An updated overview. Front. Plant Sci. 12:670103. doi:10.3389/fpls.2021.670103.
  • Song, X., Y. Xue, Q. Wang, and X. Wu. 2011. Comparison of three thermostable β-glucosidases for application in the hydrolysis of soybean isoflavone glycosides. J. Agric. Food Chem. 59 (5):1954–1961. doi:10.1021/jf1046915.
  • Suzuki, H., S. Takahashi, R. Watanabe, Y. Fukushima, N. Fujita, A. Noguchi, R. Yokoyama, K. Nishitani, T. Nishino, and T. Nakayama. 2006. An isoflavone conjugate-hydrolyzing beta-glucosidase from the roots of soybean (Glycine max) seedlings: Purification, gene cloning, phylogenetics, and cellular localization. J. Biol. Chem. 281:30251–30259. doi:10.1074/jbc.M605726200.
  • Theilmann, M. C., Y. J. Goh, K. F. Nielsen, T. R. Klaenhammer, R. Barrangou, M. Abou Hachem, E. Martens, and M. J. McFall-Ngai. 2017. Lactobacillus acidophilus metabolizes dietary plant glucosides and externalizes their bioactive phytochemicals. MBio 8 (6):8. doi:10.1128/mBio.01421-17.
  • Veldman, W., M. V. Liberato, V. M. Almeida, V. P. Souza, M. A. Frutuoso, S. R. Marana, V. Moses, Ö. Tastan Bishop, and I. Polikarpov. 2020. X-ray structure, bioinformatics analysis, and substrate specificity of a 6-phospho-β-glucosidase glycoside hydrolase 1 enzyme from Bacillus licheniformis. J. Chem. Inf. Model. 60 (12):6392–6407. doi:10.1021/acs.jcim.0c00759.
  • Yang, J., A. Roy, and Y. Zhang. 2013. Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29:2588–2595. doi:10.1093/bioinformatics/btt447.
  • Yeom, S.-J., B.-N. Kim, Y.-S. Kim, and D.-K. Oh. 2012. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus. J. Agric. Food Chem. 60 (6):1535–1541. doi:10.1021/jf204432g.
  • You, H. J., H. J. Ahn, J. Y. Kim, Q. Q. Wu, and G. E. Ji. 2015. High expression of β-glucosidase in bifidobacterium bifidum BGN4 and application in conversion of isoflavone glucosides during fermentation of soy milk. J. Microbiol. Biotechnol. 25:469–478. doi:10.4014/jmb.1408.08013.
  • Zhang, W., E. W. Bell, M. Yin, and Y. Zhang. 2020. Edock: Blind protein-ligand docking by replica-exchange monte carlo simulation. J. Cheminform. 12:37. doi:10.1186/s13321-020-00440-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.