107
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chemo-Enzymatically Modified Cereal Brans as a Modulator of Healthy Gut Bacteria: An In-Vitro and In-Vivo Study

, , , , & ORCID Icon

References

  • Ahmad, F., I. Pasha, M. Saeed, and M. Asgher. 2019. Antioxidant profiling of native and modified cereal brans. Int. J. Food Sci. Tech. 54 (4):1206–1214. doi:10.1111/ijfs.14046.
  • Alou, M. T., J.-C. Lagier, and D. Raoult. 2016. Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. Human Microbiome J. 1:3–11. doi:10.1016/j.humic.2016.09.001.
  • Angelika, K., M. Wiese, P. Heuer, O. Kosik, M. Y. Schär, G. Soycan, S. Alsharif, G. G. Kuhnle, G. Walton, and J. P. Spencer. 2019. Oat bran, but not its isolated bioactive β-glucans or polyphenols, have a bifidogenic effect in an in vitro fermentation model of the gut microbiota. Br. J. Nutr. 121 (5):549–559. doi:10.1017/S0007114518003501.
  • Arora, T., R. Sharma, and G. Frost. 2011. Propionate. Anti-obesity and satiety enhancing factor? Appetite 56 (2):511–515. doi:10.1016/j.appet.2011.01.016.
  • Banik, A., K. Ghosh, S. Pal, S. Kumar Halder, C. Ghosh, and K. Chandra Mondal. 2020. Biofortification of multi-grain substrates by probiotic yeast. Food Biotechnol. 34 (4):283–305. doi:10.1080/08905436.2020.1833913.
  • Bhat, T. K., A. Kannan, B. Singh, and O. P. Sharma. 2013. Value addition of feed and fodder by alleviating the antinutritional effects of tannins. Agr. Res. 2 (3):189–206. doi:10.1007/s40003-013-0066-6.
  • Bodie, A. R., A. C. Micciche, G. G. Atungulu, M. J. Rothrock, and S. C. Ricke. 2019. Current trends of rice milling byproducts for agricultural applications and alternative food production systems. Front. Sustain. Food Syst. 3:47. doi:10.3389/fsufs.2019.00047.
  • Costabile, A., T. Bergillos-Meca, L. Landriscina, A. Bevilacqua, I. Gonzalez-Salvador, M. R. Corbo, L. Petruzzi, M. Sinigaglia, and C. Lamacchia. 2017. An in vitro fermentation study on the effects of gluten friendlyTM bread on microbiota and short chain fatty acids of fecal samples from healthy and celiac subjects. Front Microbiol. 8:1722. doi:10.3389/fmicb.2017.01722.
  • D’hoe, K., L. Conterno, F. Fava, G. Falony, S. Vieira-Silva, J. Vermeiren, K. Tuohy, and J. Raes. 2018. Prebiotic wheat bran fractions induce specific microbiota changes. Front Microbiol 9:31. doi:10.3389/fmicb.2018.00031.
  • Dang, T. T., and T. Vasanthan. 2019. Modification of rice bran dietary fiber concentrates using enzyme and extrusion cooking. Food Hydrocoll. 89:773–782. doi:10.1016/j.foodhyd.2018.11.024.
  • Devi, K., V. Kumar, N. Mahajan, J. Kaur, S. Sharma, A. Kumar, R. Khan, M. Bishnoi, and K. K. Kondepudi. 2023. Modified cereal bran (MCB) from finger millet, kodo millet, and rice bran prevents high-fat diet-induced metabolic derangements. Food Funct. 14 (3):1459–1475. doi:10.1039/d2fo02095e.
  • Dong, J.-L., Y.-Y. Zhu, M. Yu-Ling, Q.-S. Xiang, R.-L. Shen, and Y.-Q. Liu. 2016. Oat products modulate the gut microbiota and produce anti-obesity effects in obese rats. J. Funct. Foods 25:408–420. doi:10.1016/j.jff.2016.06.025.
  • Duncan, S. H., G. Holtrop, G. E. Lobley, A. Graham Calder, C. S. Stewart, and H. J. Flint. 2004. Contribution of acetate to butyrate formation by human faecal bacteria. Br. J. Nutr. 91 (6):915–923. doi:10.1079/BJN20041150.
  • Duncan, S. H., P. Louis, and H. J. Flint. 2004. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl. Environ. Microb. 70 (10):5810–5817. doi:10.1128/AEM.70.10.5810-5817.2004.
  • El‐Wahab, A., M. F. Hanan, M. A. Mohamed, H. H. El Sayed, and A. E. Bauomy. 2017. Modulatory effects of rice bran and its oil on lipid metabolism in insulin resistance rats. J. Food Biochem. 41 (1):e12318. doi:10.1111/jfbc.12318.
  • Gangcheng, W., J. Ashton, A. Simic, Z. Fang, and S. K. Johnson. 2018. Mineral availability is modified by tannin and phytate content in sorghum flaked breakfast cereals. Food Res. Int. 103:509–514. doi:10.1016/j.foodres.2017.09.050.
  • Gaudier, E., A. Jarry, H. M. Blottiere, M. B. Pierre de Coppet, J. P. Aubert, C. Laboisse, C. Cherbut, and C. Hoebler. 2004. Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am. J. Physiol. Gastrointest. Liver Physiol. 287 (6):G1168–G1174. doi:10.1152/ajpgi.00219.2004.
  • Gibson, G. R., R. Hutkins, M. Ellen Sanders, S. L. Prescott, R. A. Reimer, S. J. Salminen, K. Scott, C. Stanton, K. S. Swanson, and P. D. Cani. 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastro. Hepat. 14 (8):491–502. doi:10.1038/nrgastro.2017.75.
  • Hatami, T., S. Ahmad Emami, S. Shahram Miraghaee, and M. Mojarrab. 2014. Total phenolic contents and antioxidant activities of different extracts and fractions from the aerial parts of Artemisia biennis Willd. Iran. J. Pharm. Res. 13 (2):551.
  • Hemery, Y., M. Chaurand, U. Holopainen, A.-M. Lampi, P. Lehtinen, V. Piironen, A. Sadoudi, and X. Rouau. 2011. Potential of dry fractionation of wheat bran for the development of food ingredients, part I: Influence of ultra-fine grinding. J. Cereal Sci. 53 (1):1–8. doi:10.1016/j.jcs.2010.09.005.
  • Hernández, G., A. Manuel, E. E. Canfora, J. W. Jocken, and E. E. Blaak. 2019. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 11 (8):1943. doi:10.3390/nu11081943.
  • Hor, P. K., K. Ghosh, S. K. Halder, J. P. Soren, D. Goswami, D. Bera, S. Nath Singh, S. K. Dwivedi, S. Parua, M. Hossain, et al. 2021. Evaluation of nutrient profile, biochemical composition and anti-gastric ulcer potentialities of khambir, a leavened flat bread. Food Chem. 345:128824. doi:10.1016/j.foodchem.2020.128824.
  • Hor, P. K., S. Pal, J. Mondal, S. Kumar Halder, K. Ghosh, S. Santra, M. Ray, D. Goswami, S. Chakrabarti, S. Singh, et al. 2022. Antiobesity, antihyperglycemic, and antidepressive potentiality of rice fermented food through modulation of intestinal microbiota. Front Microbiol. 13: Terjedelem: 17-Azonosító: 794503. doi:10.3389/fmicb.2022.794503.
  • Hosseini, E., C. Grootaert, W. Verstraete, and T. Van de Wiele. 2011. Propionate as a health-promoting microbial metabolite in the human gut. Nutr. Rev. 69 (5):245–258. doi:10.1111/j.1753-4887.2011.00388.x.
  • Kaur, A., D. J. Rose, P. Rumpagaporn, J. A. Patterson, and B. R. Hamaker. 2011. In vitro batch fecal fermentation comparison of gas and short‐chain fatty acid production using “slowly fermentable” dietary fibers. J. Food Sci. 76 (5):H137–H142.
  • Koecher, K. J., J. A. Noack, D. A. Timm, A. S. Klosterbuer, W. Thomas, and J. L. Slavin. 2014. Estimation and interpretation of fermentation in the gut: Coupling results from a 24 h batch in vitro system with fecal measurements from a human intervention feeding study using fructo-oligosaccharides, inulin, gum acacia, and pea fiber. J. Agr. Food Chem. 62 (6):1332–1337. doi:10.1021/jf404688n.
  • Koh, A., F. De Vadder, P. Kovatcheva-Datchary, and F. Bäckhed. 2016. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165 (6):1332–1345. doi:10.1016/j.cell.2016.05.041.
  • Koplík, R., M. Linková, and O. Mestek. 2011. Changes of phosphorus and trace elements species in rye and oat flakes and oat porridge induced by simulated digestion. Eur. Food Res. Technol. 232 (6):1007–1016. doi:10.1007/s00217-011-1471-3.
  • Kotzampassi, K., E. J. Giamarellos-Bourboulis, and G. Stavrou. 2014. Obesity as a consequence of gut bacteria and diet interactions. ISRN Obesity 2014:1–8. doi:10.1155/2014/651895.
  • Kumar, V., V. Kumar, N. Mahajan, J. Kaur, K. Devi, R. Naik Dharavath, R. Pal Singh, K. K. Kondepudi, and M. Bishnoi. 2022. Mucin secretory action of capsaicin prevents high fat diet-induced gut barrier dysfunction in C57BL/6 mice colon. Biomed. Pharmacother. 145:112452. doi:10.1016/j.biopha.2021.112452.
  • Kundi, Z. M., J. Chung‐Yung Lee, J. Pihlajamäki, C. Bun Chan, K. Sum Leung, S. Sik Yu so, E. Nordlund, M. Kolehmainen, and H. El‐Nezami. 2021. Dietary fiber from oat and rye brans ameliorate Western diet–induced body weight gain and hepatic inflammation by the modulation of short‐chain fatty acids, bile acids, and tryptophan metabolism. Mol. Nutr. Food Res. 65 (1):1900580. doi:10.1002/mnfr.201900580.
  • Ley, R. E., P. J. Turnbaugh, S. Klein, and J. I. Gordon. 2006. Human gut microbes associated with obesity. Nature 444 (7122):1022–1023. doi:10.1038/4441022a.
  • Liu, H., J. Wang, H. Ting, S. Becker, G. Zhang, L. Defa, and X. Ma. 2018. Butyrate: A double-edged sword for health? Adv. Nutr. 9 (1):21–29. doi:10.1093/advances/nmx009.
  • Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 (4):402–408. doi:10.1006/meth.2001.1262.
  • Masui, R., M. Sasaki, Y. Funaki, N. Ogasawara, M. Mizuno, A. Iida, S. Izawa, Y. Kondo, Y. Ito, and Y. Tamura. 2013. G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells. Inflamm. Bowel Dis. 19 (13):2848–2856. doi:10.1097/01.MIB.0000435444.14860.ea.
  • Miao, M., B. Jiang, S. W. Cui, T. Zhang, and Z. Jin. 2015. Slowly digestible starch—A review. Crit Rev Food Sci Nutr 55 (12):1642–1657. doi:10.1080/10408398.2012.704434.
  • Nandi, I., and M. Ghosh. 2015. Studies on functional and antioxidant property of dietary fibre extracted from defatted sesame husk, rice bran and flaxseed. Bioact. Carbohyd. Diet. Fibre 5 (2):129–136. doi:10.1016/j.bcdf.2015.03.001.
  • Pasha, I., F. Ahmad, Z. Siddique, and F. Iqbal. 2020. Probing the effect of physical modifications on cereal bran chemistry and antioxidant potential. J. Food Meas. Charact. 14 (4):1909–1918. doi:10.1007/s11694-020-00438-9.
  • Patel, S. 2015. Cereal bran fortified-functional foods for obesity and diabetes management: Triumphs, hurdles and possibilities. J. Funct. Foods 14:255–269. doi:10.1016/j.jff.2015.02.010.
  • Pham, T., K. Thomas Teoh, B. J. Savary, M.-H. Chen, A. McClung, and S.-O. Lee. 2017. In vitro fermentation patterns of rice bran components by human gut microbiota. Nutrients 9 (11):1237. doi:10.3390/nu9111237.
  • Pirkola, L., J. Dicksved, J. Loponen, I. Marklinder, and R. Andersson. 2023. Fecal microbiota composition affects in vitro fermentation of rye, oat, and wheat bread. Sci. Rep. 13 (1):1–12. doi:10.1038/s41598-022-26847-y.
  • Priya, G., and T. Rathinavel. 2017. Evaluation of antioxidant activity in relation with their phenolic and flavanoid content of Eclipta alba L. leaf collected from five different geographic regions of tamil nadu evaluation of antioxidant ctivity in relation with their phenolic and flavanoid. Int. J. Adv. Interdiscip. Res. 4 (4):10–16.
  • Ramaiyulis, R., Y. Eva, and N. Nilawati. 2020. Improving rumen fermentability and fiber fraction digestion of fermented rice straw with a cattle feed supplement and a concentrate. Int. J. Zool. Res. 7 (2):35–40. doi:10.36347/sjavs.2020.v07i02.003.
  • Ray, M., P. K. Hor, D. Ojha, J. P. Soren, S. N. Singh, and K. C. Mondal. 2018. Bifidobacteria and its rice fermented products on diet induced obese mice: Analysis of physical status, serum profile and gene expressions. Benef. Microbes 9 (3):441–452. doi:10.3920/BM2017.0056.
  • Russell, W. R., L. Hoyles, H. J. Flint, and M.-E. Dumas. 2013. Colonic bacterial metabolites and human health. Curr. Opin. Microbiol. 16 (3):246–254. doi:10.1016/j.mib.2013.07.002.
  • Saman, P., K. M. Tuohy, J. A. Vázquez, G. Gibson, and S. S. Pandiella. 2017. In vitro evaluation of prebiotic properties derived from rice bran obtained by debranning technology. Int. J. Food Sci. Nutr. 68 (4):421–428. doi:10.1080/09637486.2016.1258045.
  • Samanta, S., S. Giri, S. Parua, D. K. Nandi, B. R. Pati, and K. C. Mondal. 2004. Impact of tannic acid on the gastrointestinal microflora. Microb. Ecol. Health Dis. 16 (1):32–34. doi:10.1080/08910600310026158.
  • Santala, O., A. Kiran, N. Sozer, K. Poutanen, and E. Nordlund. 2014. Enzymatic modification and particle size reduction of wheat bran improves the mechanical properties and structure of bran-enriched expanded extrudates. J. Cereal Sci. 60 (2):448–456. doi:10.1016/j.jcs.2014.04.003.
  • Sarma, S. M., D. P. Singh, P. Singh, P. Khare, P. Mangal, S. Singh, V. Bijalwan, J. Kaur, S. Mantri, R. Kaur Boparai, et al. 2018. Finger millet arabinoxylan protects mice from high-fat diet induced lipid derangements, inflammation, endotoxemia and gut bacterial dysbiosis. Int. J. Biol. Macromol. 106:994–1003. doi:10.1016/j.ijbiomac.2017.08.100.
  • Sarma, S. M., P. Khare, S. Jagtap, D. P. Singh, R. K. Baboota, K. Podili, R. K. Boparai, J. Kaur, K. K. Bhutani, M. Bishnoi, and K. K. Kondepudi. 2017. Kodo millet whole grain and bran supplementation prevents high-fat diet induced derangements in a lipid profile, inflammatory status and gut bacteria in mice. Food Funct. 8 (3):1174–1183. doi:10.1039/C6FO01467D.
  • Singh, D. P., P. Khare, V. Bijalwan, R. Kumar Baboota, J. Singh, K. K Kondepudi, K. Chopra, and M. Bishnoi. 2017. Coadministration of isomalto‐oligosaccharides augments metabolic health benefits of cinnamaldehyde in high fat diet fed mice. BioFactors 43 (6):821–835. doi:10.1002/biof.1381.
  • Tanasković, S. J., N. Šekuljica, J. Jovanović, I. Gazikalović, S. Grbavčić, N. Đorđević, M. Vukašinović Sekulić, J. Hao, N. Luković, and Z. Knežević-Jugović. 2021. Upgrading of valuable food component contents and anti-nutritional factors depletion by solid-state fermentation: A way to valorize wheat bran for nutrition. J. Cereal Sci. 99:103159. doi:10.1016/j.jcs.2020.103159.
  • Turnbaugh, P. J., R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis, and J. I. Gordon. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 (7122):1027–1031. doi:10.1038/nature05414.
  • Van den Abbeele, P., K. Venema, T. Van de Wiele, W. Verstraete, and S. Possemiers. 2013. Different human gut models reveal the distinct fermentation patterns of arabinoxylan versus inulin. J. Agric. Food Chem. 61 (41):9819–9827. doi:10.1021/jf4021784.
  • van der Hee, B., and J. M. Wells. 2021. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol. 29 (8):700–712. doi:10.1016/j.tim.2021.02.001.
  • Vinolo, M. A., H. G. Rodrigues, R. T. Nachbar, and R. Curi. 2011. Regulation of inflammation by short chain fatty acids. Nutrients 3 (10):858–876. doi:10.3390/nu3100858.
  • Xiang, J., F. B. Apea-Bah, V. U. Ndolo, M. C. Katundu, and T. Beta. 2019. Profile of phenolic compounds and antioxidant activity of finger millet varieties. Food Chem. 275:361–368. doi:10.1016/j.foodchem.2018.09.120.
  • Zeng, H., C. Huang, S. Lin, M. Zheng, C. Chen, B. Zheng, and Y. Zhang. 2017. Lotus seed resistant starch regulates gut microbiota and increases short-chain fatty acids production and mineral absorption in mice. J. Agr. Food Chem. 65 (42):9217–9225. doi:10.1021/acs.jafc.7b02860.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.