125
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of Dietary Factors on Colonisation Resistance and Colonisation

Pages 48-52 | Published online: 11 Jul 2009

References

  • Barton RG, Cerra FB, Wells CL. Effect of a diet deficient in essential fatty acids on the translocation of intestinal bacteria. J Parenter Enteral Nutr 1992; 16: 122–8.
  • Blankenship-Paris TL, Walton BJ, Hayes YO, Chang J. Clostridium difficile infection in hamsters fed an atherogenic diet. Vet Pathol 1995; 32: 269–73.
  • Popoff MR, Szylit O, Ravisse P, Dabard J, Ohayon H. Experimental cecitis in gnotoxenic chickens monoassociatekl with Clostridium butyricum strains isolated from patients with neonatal necrotizing enterocolitis. Infect Immun 1985; 47: 697–703.
  • Bousseboua H, Le Coz Y, Dabard J, Szylit O, Raibaud P, Popoff MR, Ravisse P. Experimental cecitis in gnotobiotic quails monoassociated with Clostridium butyricum strains iso-lated from patients with neonatal necrotizing enterocolitis and from healthy newborns. Infect Immun 1989; 57: 932–6.
  • Takeda T, Fukata T, Miyamoto T, Sasai K, Baba E, Arakawa A. The effects of dietary lactose and rye on cecal colonization of Clostridium perfringens in chicks. Avian Dis 1995; 39: 375–81.
  • Butel MJ, Roland N, Hibert A, Popot F, Favre A, Tessedre AC, Bensaada M, Rimbault A, Szylit O. Clostridial patho-genicity in experimental necrotising enterocolitis in gnotobiotic quails and protective role of bifidobacteria. J Med Microbiol 1998; 47: 391–9.
  • Catala I, Butel MJ, Bensaada M, Popot F, Tessedre AC, Rimbault A, Szylit O. Oligofructose contributes to the protec-tive role of bifidobacteria in experimental necrotising entero-colitis in quails. J Med Microbiol 1999; 48: 89–94.
  • Cresci A, Orpianesi C, Silvi S, Mastrandrea V, Dolara P. The effect of sucrose or starch-based diet on short-chain fatty acids and faecal microflora in rats. J Appl Microbiol 1999; 86: 245–50.
  • Ito Y, Moriwaki H, Muto Y, Kato N, Watanabe K, Ueno K. Effect of lactulose on short-chain fatty acids and lactate production and on the growth of faecal flora, with special reference to Clostridium difficile. J Med Micro 1997; 46: 80–4.
  • May T, Mackie RI, Fahey, Jr GC, Cremin JC, Garleb KA. Effect of fiber source on short-chain fatty acid production and on the growth and toxin production by Clostridium difficile. Scand J Gastroenterol 1994; 29: 916–22.
  • Ducluzeau R, Ladire M, Raibaud P. Effect of the ingestion of wheat bran on the fecal microbial flora of human donors and of recipient gnotoxenic mice, and on the barrier effects exerted by these flora against various potentially pathogenic microor-ganisms. Ann Microbiol (Paris) 1984; 135A: 303–18.
  • Ward PB, Young GP. Dynamics of Clostridium difficile infec-tion. Control using diet. Adv Exp Med Biol 1997; 412: 63–75.
  • Wells CL, Barton RG, Jechorek RP, Gillingham KJ, Cerra FB. Effect of fiber supplementation of liquid diet on cecal bacteria and bacterial translocation in mice. Nutrition 1992; 8: 266–71.
  • Lhuillery C, Demame Y, Ducluzeau R, Clara A. Inhibitory effect of dietary soybean meal on the establishment of a Clostridium strain in the gastrointestinal tract of mice. Infect Immun 1982; 36: 621–7.
  • Cooperstock M, Riegle L, Woodruff CVV, Onderdonk A. Influence of age, sex, and diet on asymptomatic colonization of infants with Clostridium difficile. J Clin Microbiol 1983; 17: 830–3.
  • Hentges DJ, Marsh WW, Petschow BW, Thal WR, Carter MK. Influence of infant diets on the ecology of the intestinal tract of human flora-associated mice. J Pediatr Gastroenterol Nutr 1992; 14: 146–52.
  • Teraguchi S, Shin K, Ozawa K, Nakamura S, Fukuwatari Y, Tsuyuki S, Namihira H, Shimamura S. Bacteriostatic effect of orally administered bovine lactoferrin on proliferation of Clostridium species in the gut of mice fed bovine milk. Appl Environ Microbiol 1995; 61: 501–6.
  • Isogai E, Isogai H, Takeshi K, Nishikawa T. Protective effect of Japanese green tea extract on gnotobiotic mice infected with an Escherichia coli 0157:H7 strain. Microbiol Immunol 1998; 42: 125–8.
  • Ducluzeau R, Raibaud P, Dubos F, Clara A, Lhuillery C. Remanent effect of some dietary regimens on the establish-ment of two Clostridium strains in the digestive tract of gnotobiotic mice. Am J Clin Nutr 1981; 34: 520–6.
  • Ikeda D, Karasawa T, Yamakawa K, Tanaka R, Namiki M, Nakamura S. Effect of isoleucine on toxin production by Clostridium difficile in a defined medium. Zbl Bakt 1998; 287: 375–86.
  • Karasawa T, Maegawa T, Nojiri T, Yamakawa K, Nakamura S. Effect of arginine on toxin production by Clostridium difficile in defined medium. Microbiol Immunol 1997; 41: 581–5.
  • Yamakawa K, Kamiya S, Meng XQ, Karasawa T, Nakamura S. Toxin production by Clostridium difficile in a defined medium with limited amino acids. J Med Microbiol 1994; 41: 319–23.
  • Yamakawa K, Karasawa T, Ikoma S, Nakamura S. Enhance-ment of Clostridium difficile toxin production in biotin-limited conditions. J Med Microbiol 1996; 44: 111–4.
  • Yamakawa K, Karasawa T, Ohta T, Hayashi H, Nakamura S. Inhibition of enhanced toxin production by Clostridium difficile in biotin-limited conditions. J Med Microbiol 1998; 47: 767–71.
  • Bartlett JG, Onderdonk AB, Cisneros RL, Kasper DL. Clin-damycin-associated colitis due to a toxin-producing species of Clostridium in hamsters. J Infect Dis 1977; 136: 701–5.
  • Onderdonk AB, Hermos JA, Bartlett JG. The role of the intestinal microflora in experimental colitis. Am J Clin Nutr 1977; 30: 1819–25.
  • Corthier G, Dubos F, Raibaud P. Modulation of cytotoxin production by Clostridium difficile in the intestinal tracts of gnotobiotic mice inoculated with various human intestinal bacteria. Appl Environ Microbiol 1985; 49: 250–2.
  • Czuprynski CJ, Johnson WJ, Balish E, Wilkins T. Pseu-domembranous colitis in Clostridium difficile-monoassociatecl rats. Infect Immun 1983; 39: 1368–76.
  • Corthier G, Dubos F, Ducluzeau R. Prevention of Clostrid-ium difficile induced mortality in gnotobiotic mice by Saccha-romyces boulardii. Can J Microbiol 1986; 32: 894–6.
  • Dubos-Ramaré F, Corthier G. Influence of dietary proteins on production of Clostridium difficile toxins in gnotobiotic mice. Microb Ecol Health Dis 1990; 3: 231–4.
  • Mahe S, Corthier G, Dubos F. Effect of various diets on toxin production by two strains of Clostridium difficile in gnotobiotic mice. Infect Immun 1987; 55: 1801–5.
  • Barroso LA, Wang SZ, Phelps CJ, Johnson JL, Wilkins TD. Nucleotide sequence of Clostridium difficile toxin B gene. Nucleic Acids Res 1990; 18: 4004.
  • Dove CH, Wang SZ, Price SB, Phelps CJ, Lyerly DM, Wilkins TD, Johnson JL. Molecular characterization of the Clostridium difficile toxin A gene. Infect Immun 1990; 58: 480–8.
  • Hammond GA, Johnson JL. The toxigenic element of Clostridium difficile strain WI 10463. Microb Pathol 1995; 19: 203–13.
  • von Eichel-Streiber C, Laufenberg-Feldmann R, Sartingen S, Schulze J, Sauerbom M. Comparative sequence analysis of the Clostridium difficile toxins A and B. Mol Gen Genet 1992; 233: 260–8.
  • von Eichel-Streiber C, Meyer zu Heringdorf D, Habermann E, Sartingen S. Closing in on the toxic domain through analysis of a variant Clostridium difficile cytotoxin B. Mol Microbiol 1995; 17: 313–21.
  • von Eichel-Streiber C, Suckau D, Wachter M, Hadding U. Cloning and characterization of overlapping DNA fragments of the toxin A gene of Clostridium difficile. J Gen Microbiol 1989; 135: 55–64.
  • Hundsberger T, Braun V, Weidmann M, Leukel P, Sauerbom M, von Eichel-Streiber C. Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile. Eur J Biochem 1997; 244: 735–42.
  • Hammond GA, Lyerly DM, Johnson JL. Transcriptional analysis of the toxigenic element of Clostridium difficile. Mi-crob Pathogenesis 1997; 22: 143–54.
  • Moncrief JS, Barroso LA, Wilkins TD. Positive regulation of Clostridium difficile toxins. Infect Immun 1997; 65: 1105–8.
  • Dupuy B, Sonenshein AL. Regulated transcription of Clostridium difficile toxin genes. Mol Microbiol 1998; 27: 107–20.
  • Corthier G, Delorme C, Ehrlich SD, Renault P. Use of luciferase genes as biosensors to study bacterial physiology in the digestive tract. Appl Environ Microbiol 1998; 64: 2721–2.
  • Corthier G, Lucas F, Jouvert S, Castex F. Effect of oral Saccharomyces boulardii treatment on the activity of Clostrid-ium difficile toxins in mouse digestive tract. Toxicon 1992; 30: 1583–9.
  • Pothoulakis C, Kelly CP, Joshi MA, Gao N, O'Keane CJ, Castagliuolo I, Lamont JT. Saccharomyces boulardii inhibits Clostridium difficile toxin A binding and enterotoxicity in rat ileum. Gastroenterology 1993; 104: 1108–15.
  • Castagliuolo I, LaMont JT, Nikulasson ST, Pothoulakis C. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infect Immun 1996; 64: 5225–32.
  • Castagliuolo I, Riegler MF, Valenick L, LaMont JT, Pothou-lakis C. Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infect Immun 1999; 67: 302–7.