581
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Models to Study Colonisation and Colonisation Resistance

Pages 247-258 | Published online: 11 Jul 2009

References

  • Collins FM, Carter PB. Growth of Salmonellae in orally infected germ-free mice. Infect Immun 1978; 21: 41–7.
  • Smith HW, Tucker JF. The effect of feeding diets containing permitted antibiotics on the faecal excretion of Salmonella typhimurium by experimentally infected chickens. J Hygiene 1975; 75: 293–301.
  • Bohnhoff M, Drake BL, Miller CP. Effect of streptomycin on susceptibility of the intestine tract to experimental salmonella infection. Proc Soc Exp Biol Med 1954; 86: 132–7.
  • Freter R. The fatal enteric cholera infection in the guinea pig achieved by inhibition of normal enteric flora. J Infect Dis 1955; 97: 57–65.
  • Freter R. Experimental enteric shigella and vibrio infection in mice and guinea pigs. J Exp Med 1956; 104: 411–8.
  • Burr DH, Sugiyama H, Harvis G. Susceptibility to enteric botulinum colonization of antibiotic treated adult mice. In-fect Immun 1982; 36: 103–6.
  • Nielsen EM, Schlundt J. Use of norfoxacin to study coloni-sation ability of Escherichia coli in vivo and in vitro models of the porcine gut. Antimicrob Agents Chemother 1992; 36: 401–7.
  • Mysore JV, Duhamel GE Morphometric analysis of enteric lesions in C3H/HeN mice inoculated with Serpulina hyo-dysentericae serotypes 2 and 4 with or without oral strepto-mycin pretreatment. Can J Vet Res 1994; 58: 281–6.
  • Sugiyama H, Mills DC. Intraintestinal toxin in infant mice challenged intragastrically with Clostridium botulinum spores. Infect Immun 1978; 21: 59–63.
  • Rolfe RD, Iaconis JP. Intestinal colonization of infant ham-sters with Clostridium difficile. Infect Immun 1983; 42: 480–6.
  • Gorbach SL, Barza M, Giuliano M, Jacobus NV. Coloniza-tion resistance of the human intestinal microflora: testing the hypothesis in normal volunteers. Eur J Clin Microbiol Infect Dis 1988; 7: 98–102.
  • Bothell° SP, Barclay FE, Welch AR. Evaluation of the predictive capability of an in vitro model of colonization resistance to Clostridium difficile infection. Microb Ecol Health Dis 1988; 1: 61–4.
  • Wilson KH, Sheagren JV, Freter R. Population dynamics of ingested Clostridium difficile in the gastrointestinal tract of the Syrian hamster. J Infect Dis 1985; 151: 355–61.
  • Larson HE, Bothell° SP. Quantitative study of antibiotic-in-duced susceptibility to Clostridium difficile enterocecitis in hamsters. Antimicrob Agents Chemother 1990; 34: 1348–53.
  • Pazzaglia G, Winoto I, Jennings G. Oral challenge with Aeromonas in protein-malnourished mice. J Diarrhoeal Dis Res 1994; 12: 108–12.
  • Chiang SL, Taylor RK, Koomey M, Mekalanos JJ. Single amino acid substitutions in the N-terminus of Vibrio cholerae TcpA affect colonization, autoagglutination, and serum resistance. Mol Microbiol 1995; 17: 1133–42.
  • Whitman MS, Pitsakis PG, DeJesus E, Osborne AJ, Levison ME, Johnson CC. Gastrointestinal tract colonization with vancomycin-resistant Enterococcus faecium in an animal model. Antimicrob Agents Chemother 1996; 40: 1526–30.
  • Lim JK, Gunther NW 4th, Zhao H, Johnson DE, Keay SK, Mobley HL. In vivo phase variation of Escherichia coli type 1 fimbrial genes in women with urinary tract infection. Infect Immun 1998; 66: 3303–10.
  • Pei Z, Burucoa C, Grignon B, Baquar S, Huang XZ, Kopecko DJ, Bourgeois AL, Fauchere JL, Blaser MJ. Muta-tion in the peblA locus of Campylobacter jejuni reduces interactions with epithelial cells and intestinal colonization of mice. Infect Immun 1998; 66: 938–43.
  • Heidt PJ, Koopman JP, Kennis HM, van den Logt if, Hectors MP, Nagengast FM, Timmermans CP, de Groot CW. The use of a rat-derived microflora for providing colonization resistance in SPF rats. Lab Anim 1990; 24: 375–9.
  • Bovee-Oudenhoven I, Tennont D, Dekker R, Van der Meer R. Calcium in milk and fermentation by yoghurt bacteria increase the resistance of rats to Salmonella infection. Gut 1996; 38: 59–65.
  • Bovee-Oudenhoven I, Van der Meer R. Protective effects of dietary lactulose and calcium phosphate against Salmonella infection. Scand J Gastroenterol Suppl 1997; 222: 112–4.
  • Bovee-Oudenhoven IM, Termont DS, Heidt PJ, Van der Meer R. Increasing the intestinal resistance of rats to the invasive pathogen Salmonella enteritidis: additive effects of dietary lactulose and calcium. Gut 1997; 40: 497–504.
  • Caplan MS, Hedlund E, Adler L, Hsueh W. Role of as-phyxia and feeding in a neonatal rat model of necrotizing enterocolitis. Pediatr Pathol 1994; 14: 1017–28.
  • Berends BR, Urlings HA, Snijders JM, Van Knapen F. Identification and quantification of risk factors in animal management and transport regarding Salmonella spp. in pigs. Int J Food Microbiol 1996; 30: 37–53.
  • Nagy B, Arp LH, Moon HW, Casey TA. Colonisation of the small intestine of weaned pigs by enterotoxigenic - cherichia coli that lack known colonization factors. Vet Pathol 1992a; 29: 239–46.
  • Nagy B, Casey A, Whipp SC, Moon HW. Susceptibility of porcine intestine to pilus mediated adhesion by some isolates of piliated enterotoxigenic Ercherichia coli increases with age. Infect Immun 1992b; 60: 1285–94.
  • Van der Waaij D, Van der Waaij BD. The colonization resistance of the digestive tract in different animal species and in man; a comparative study. Epidemiol Infect 1990; 105: 237–43.
  • Berchieri A Jr, Barrow PA. Further studies on the inhiition of colonization of the chicken alimentary tract with Salmonella typhimurium by pre-colonization with an aviru-lent mutant. Epidemiol Infect 1990; 104: 427–41.
  • Andrutis KA, Fox JG, Schauer DB, Marini RP, Li X, Yan L, Josenhans C, Suerbaum S. Infection of the ferret stomach by isogenic flagellar mutant strains of Helicobacter mustelae. Infect Immun 1997; 65: 1962–6.
  • Kubota T, Fujioka T, Nasu M. Helicobacter pylori infection. Rinsho Byori 1998; 46: 623–8.
  • Catala I, Butel MJ, Bensaada M, Popot F, Tessedre AC, Rimbault A, Szylit O. Oligofructose contributes to the pro-tective role of bifidobacteria in experimental necrotising enterocolitis in quails. J Med Microbiol 1999; 48: 89–94.
  • Shedlofsky S, Freter R. Synergism between ecologic and immunologic control mechanisms of intestinal flora. J Infect Dis 1974; 129: 296–303.
  • Moberg LJ, Sugiyama H. Microbial ecological basis of infant botulism as studied with germfree mice. Infect Immun 1978; 25: 653–7.
  • Wilson KH, Sheagren JN, Freter R, Weatherbee L, Lyerly L. Gnotobiotic models for study of the microbial ecology of Clostridium difficile and Escherichia coli. J Infect Dis 1986; 153: 547–51.
  • Onderdonk AB, Cisneros RL, Bartlett JG. Clostridium diffi-cile in gnotobiotic mice. Infect Immun 1980; 28: 277–82.
  • Wilson KH, Patel M, Permoad P, Moore L. Ecologic succes-sion-use in development of synthetic microfloras. Microecol Ther 1986; 16: 181–9.
  • Raibaud P, Ducluzeau R, Dubos R, Hudault S, Bewa H, Muller MC. Implantation of bacteria from the digestive tract of man and various animals in gnotobiotic mice. Am J Clin Nutr 1980; 33: 2440–7.
  • Pecquet S, Guillaumin D, Tancrede C, Andremont A. Kinet-ics of Saccharomyces cerevisiae elimination from the intes-tines of human volunteers and effect of this yeast on resistance to microbial colonization in gnotobiotic mice. Appl Environ Microbiol 1991; 57: 3049–51.
  • Bry L, Falk PG, Midvedt T, Gordon JI. A model of host-microbial interactions in an open mammalian ecosys-tem. Science 1996; 273: 1380–3.
  • Hooper LV, Bry L, Falk PG, Gordon JI. Host-micobial symbiosis in the mammalian intestine: exploring an internal ecosystem. Bioessays 1998; 20: 336–43.
  • Hultgren SJ, Abraham S, Caparon M, Falk P, St. Geme JW, Normak S. Pilus and nonpilus bacterial adhesins: assembly and function in cell regocnition. Cell 1993; 73: 887–901.
  • Salyers AA, Pajeau M. Competitiveness of different polysac-charides utilization mutants of Bacteroides thetaiotaomicron in the intestinal tracts of germfree mice. Appl Environ Microbiol 1989; 55: 2572–8.
  • Falk PG, Hooper LV, Midtvedt T, Gordon JI. Creating and maintaining the gastrointestinal ecosystem: What we know and need to know from gnotobiology. Microbiol Mol Biol Rev 1998; 62: 1157–70.
  • Nurmi E, Rantala M. New aspects of Salmonella infection in broiler production. Nature 1973; 241: 210–1.
  • Mead GC, Barrow PA, Hinton MH, Humbert F, Impey CS, Lahellec C, Mulder RW, Stavric S, Stern NJ. Recommended assay for treatment of chicks to prevent Salmonella coloniza-tion by 'competitive exclusion'. J Food Prot 1989; 52: 500–2.
  • Nurmi E, Nuotio L, Schneitz C. The competitive exclusion concept: development and future. Int J Food Microbiol 1992; 15: 237–40.
  • Hakkinen M, Schneitz C. Efficacy of a commercial competi-tive exclusion product against chicken pathogenic Es-cherichia coli and E. coli 0157:H7. Vet Rec 1996; 139: 139–41.
  • Nisbet DJ. Use of competitive exclusion in food animals. J Am Vet Med Assoc 1998; 213: 1744–6.
  • Soerjadi AS, Stehman SM, Snoeyenbos GH, Weinack OM, Smyser CF. The influence of Lactobacilli on the competitive exclusion of paratyphoid Salmonellae in chickens. Avian Dis 1981; 25: 1027–33.
  • Stavric S. Defined cultures and prospects. Int J Food Micro-biol 1992; 15: 245–63.
  • Impey CS, Mead GC, George SM. Competitive exclusion of salmonella from the chick caecum using a defined mixture of bacterial isolates from the caecal microflora of an adult bird. J Hygiene 1982; 89: 479–90.
  • Syet SA, Abrams GD, Freter R. Efficiency of various intesti-nal bacteria in assuming normal function of enteric flora after association with germ-free mice. Infect Immun 1970; 2: 376–86.
  • Wilson KH, Moore L, Patel M, Pemoad P. Suppression of potential pathogens by a defined colonic microflora. Microb Ecol Health Dis 1988; 1: 237–43.
  • Ducluzeau R, Ladire M, Callut C, Raibaud P, Abrams GD. Antagonistic effect of extremely oxygen-sensitive clostridia from the microflora of conventional mice and of Escherichia coli against Shigella flexneri in the digestive tract of gnotobi-otic mice. Infect Immun 1977; 17: 415–24.
  • De Macias ME, Apella MC, Romero NC, Gonzalez SN, Oliver G. Inhibition of Shigella sonnei by Lactobacillus casei and Lactobacillus acidophilus. J Appl Bacteriol 1992; 73: 407–11.
  • Hudault S, Lievin V, Bernet-Carmad MF, Servin AL. An-tagonistic activity exerted in vitro and in vivo by Lactobacil-lus casei (strain GG) against Salmonella typhimurium C5 infection. Appl Environ Microbiol 1997; 63: 513–8.
  • Kabir AM, Aiba Y, Takagi A, Kamiya S, Miwa T, Koga Y. Prevention of Helicobacter pylori infection by lactobacilli in a gnotobiotic murine model. Gut 1997; 41: 49–55.
  • Rodrigues AC, Nardi RM, Bambirra EA, Vieira EC, Nicoli JR. Effect of Saccharomyces boulardii against experimental oral infection with Salmonella typhimurium and Shigella flexneri in conventional and gnotobiotic mice. J Appl Bacte-riol 1996; 81: 251–6.
  • Hazenberg MP, Bakker M, Verschoor-Burggraaf A. Effects of human intestinal microflora on germ-free mice. J Appl Bacteriol 1981; 50: 95.
  • Mallet AK, Beame CA, Rowland IR, et al. The use of rats associated with a human faecal flora as a model for studying the effects of diet on the human gut microflora. J Appl Bacteriol 1987; 63: 39.
  • Freter R, Staufer E, Cleven D, Holdeman LV, Moore WEC. Continuous-flow cultures as in vitro models of the ecology of the large intestinal flora. Infect Immun 1983a; 39: 666–75.
  • Freter R, Brickner H, Botney M, Cleven D, Aranki A. Mechanisms that control bacterial populations in continu-ous-flow models of mouse large intestinal flora. Infect Im-mun 1983; 39: 676–85.
  • Edwards CA, Duerden BI, Read NW. The effects of pH on colonic bacteria grown in continuous culture. J Med Micro-biol 1985; 19: 169–80.
  • Mallet AK, Rowland IR, Beame CA, Purchase R, Gangolli SD. Metabolic adaptation of rat faecal microflora to cycla-mate in vitro. Food Chem Toxicol 1985; 23: 1029–34.
  • Wilson KH, Freter R. Interaction of Clostridium difficile and Escherichia coli with microfloras in continuous-flow cultures and gnotobiotic mice. Infect Immun 1986; 54: 354–8.
  • Kennedy MJ, Rogers AL, Yancey RJ Jr. An anaerobic continuous-flow culture model of the interactions between intestinal microflora and Candida albicans. Mycopathologia 1988; 103: 125–34.
  • Wilson KH, Perini F. Role of competition for nutrients in suppression of Clostridium difficile by the colonic microflora. Infect Immun 1988; 56: 2610–4.
  • Bernhardt H, Knoke M. Recent studies on the microbial ecology of the upper gastrointestinal tract. Infection 1989; 17: 259–63.
  • Nisbet DJ, Corner DE, DeLoach JR Effect of mixed cecal microflora maintained in continuous culture and of dietary lactose on Salmonella typhimurium colonization in broiler chicks. Avian Dis 1993; 37: 528–35.
  • Bernhardt H, Wellmer A, Zimmermann K, Knoke M. Growth of Candida albicans in normal and altered faecal flora in the model of continuous flow culture. Mycoses 1995; 38: 265–70.
  • Bernhardt H, Knoke M. Mycological aspects of the gas-trointestinal microflora. Scand J Gastroenterol Suppl 1997; 222: 102–6.
  • Gerritse J, Schut F, Gottschal JC. Modelling of mixed chemostat cultures of an aerobic bacterium Comamonas testosteroni, and an anaerobic bacterium Veillonella alcales-cens: comparison with experimental data. Appl Environm Microbiol 1992; 58: 1466–76.
  • Coleman ME, Dreesen DW, Wiegert RG. A simulation of microbial competition in the human colonic ecosystem. Appl Environm Microbiol 1996; 62: 3632–9.
  • Koch AL, Robinson JA, and Milliken GA. Mathematical Modelling in Microbial Ecology 1998. Chapman & Hall, New York.
  • Nuotio L, Mead GC. An in vitro model for studies on bacterial interactions in the avian caecum. Lett Appl Micro-biol 1993; 17: 65–7.
  • Itoh K, Freter R. Control of Escherichia coli populations by a combination of indigenous clostridia and lactobacilli in gnotobiotic mice and continuous-flow cultures. Infect Im-mun 1989; 57: 559–65.
  • Gibson GR, Wang X. Enrichment of bifidobacteria from human gut contents by oligofructose using continouos cul-ture. FEMS Microbiol Lett 1994; 118: 121–7.
  • Nonet L, Vande Velde I, and Verstraete. Effect of the addition of Peptostreptococcus product us ATCC35244 on the gastro-intestinal microbiota and its activity, as simulated in an in vitro simulator of the human gastro-intestinal tract. Appl Microbiol Biotechnol 1997; 48: 99–104.
  • Kontula P, Jaskari J, Nonet L, De Smet I, von Wright A, Poutanen K, Mattila-Sandholm T. The colonization of a simulator of the human intestinal microbial ecosystem by a probiotic strain fed on a fermented oat bran product: effects on the gastrointestinal microbiota. Appl Microbiol Biotech-nol 1998; 50: 246–52.
  • Alander M, De Smet I, Nonet L, Verstraete W, von Wright A, Mattila-Sandholm T. The effect of probiotic strains on the microbiota of the simulator of the human intestinal microbial ecosystem (SHIME). Int J Food Microbiol 1999; 46: 71–9.
  • Minekus M, Marteau P, Havenaar R, Huis in't Veld JHJ. A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. ATLA 1995; 23: 197–209.
  • Asplund K, Hakkinen M, Bjorkroth J, Nuotio L, Nurmi E. Note: inhibition of the growth of Yersinia enterocolitica 0:3 by the microflora of porcine caecum and ileum in an in vitro model. J Appl Bacteriol 1996; 81: 217–22.
  • Marteau P, Minekus M, Havenaar R, Huis in't Veld JH. Survival of lactic acid bacteria in a dynamical model of the stomach and the small intestine: validation and the effect of bile. J Dairy Sci 1997; 80: 1031–7.
  • Ganzle MG, Hertel C, van der Vossen JM, Hammes WP. Effect of bacteriocin producing lactobacilli on the survival of Escherichia coli and Listeria in a dynamic model of the stomach and the small intestine. Int J Food Microbiol 1999; 48: 21–35.
  • Knutton S, Lloyd DR, Candy DC, McNeish AS. In vitro adhesion of enterotoxigenic Escherichia coli to human intes-tinal epithelial cells from mucosal biopsies. Infect Immun 1984; 44: 514–8.
  • Bertshinger HU, Bachmann M, Mettler C, Pospischil A, Schraner EM, Stamm M, Sydler T, Wild P. Adhesive fimbriae produced in vivo by Ercherichia coli 0139:K12(B):H1 associated with enterotoxaemia in pigs. Vet Microbiol 1990; 25: 267–81.
  • Favennec L, Chochillon C, Meillet D, Magne D, Savel J, Raichvarg D, Gobert JG. Adherence and multiplication of Giardia intestinalis on human enterocyte-like differentiated cells in vitro. Parasitol Res 1990; 76: 581–4.
  • Magne D, Favennec L, Chochillon C, Gorenflot A, Meillet D, Kapel N, Raichvarg D, Savel J, Gobert JG. Role of cytoskeleton and surface lectins in Giardia duodenalis attach-ment to Caco-2 cells. Parasitol Res 1991; 77: 659–62.
  • Coconnier MH, Bernet MF, Chauviere G, Servin AL. Ad-hering heat-killed Lactobacillus acidophilus, strain LB, in-hibits the process of pathogenicity of diarrhoeagenic bacteria in cultured human intestinal cells. J Diarrhoeal Dis Res 1993; 11: 235–42.
  • Crociani J, Grill JP, Huppert M, Ballongue J. Adhesion of different bifidobacteria strains to human enterocyte-like Caco-2 cells and comparison with in vivo study. Lett Appl Microbiol 1995; 21: 146–8.
  • Bernet-Camard MF, Liévin V, Brassart D, Neeser JR, Servin AL, Hudault S. The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial sub-stance(s) active in vitro and in vivo. Appl Environm Micro-biol 1997; 63: 2747–53.
  • Ouwehand AC, Niemi P, Salminen SJ. The normal faecal microflora does not affect the adhesion of probiotic bacteria in vitro. FEMS Microbiol Lett 1999; 177: 35–8.
  • Wells CL, van de Westerlo EM, Jechorek RP, Erlandsen SL. Exposure of the lateral enterocyte membrane by dissociation of calcium-dependent junctional complex augments endocy-tosis of enteric bacteria. Shock 1995; 4: 204–10.
  • Wells CL, van de Westerlo EM, Jechorek RP, Erlandsen SL. Intracellular survival of enteric bacteria in cultured human enterocytes. Shock 1996; 6: 27–34.
  • Wells CL, van de Westerlo EM, Jechorek RP, Erlandsen SL. Effect of hypoxia on enterocyte endocytosis of enteric bacte-ria. Crit Care Med 1996; 24: 985–91.
  • Xu DZ, Lu Q, Kubicka R, Deitch EA. The effect of hypoxia/reoxygenation on the cellular function of intestinal epithelial cells. J Trauma 1999; 46: 280–5.
  • Xu DZ, Lu Q, Swank GM, Deitch EA. Effect of heat shock and enterotoxin stress on enterocyte viability, apoptosis and function varies based on whether the cells are exposed to heat shock or endotoxin first. Arch Surg 1996; 131: 1222–8.
  • Hu ZL, Hasler-Rapacz J, Huang SC, Rapacz J. Studies in swine on inheritance and variation in expression of small intestinal receptors mediating adhesion of the K88 en-teropathogenic Escherichia coli variants. J Hered 1993; 84: 157–65.
  • Vogeli P, Bertschinger HU, Stamm M, Stricker C, Hagger C, Fries R, Rapacz J, Stranzinger G. Genes specifying receptors for F18 fimbriated Escherichia coli, causing diarrhoea in pigs, map to chromosome 6. Anim Genet 1996; 27: 321–8.
  • Lucas F, Elmer GW, Brot-Laroche E, Corthier G. Fixation of Clostridium difficile toxin A and cholera toxin to intestinal brush border membranes from axenic and conventional mice. Infect Immun 1989; 57: 1680–3.
  • Freter R, Brickner H, Fekete J, Vickerman MM, Carey KY. Survival and implantation of Escherichia coli in the intestinal tract. Infect Immun 1983c; 39: 686–703.
  • Wilkinson MHF. Nonlinear dynamics, chaos-theory, and the 'sciences of complexity': their relevance to the study of the interaction between host and microflora. 1997; In: 'Old Herbom University Monograph Vol. 10: New Antimicrobial Strategies' (Heidt P.J., V. Rusch V., and Van der Waaij D., eds.), pp. 111–130, Herbom Litterae, Herbom-Dill, Germany.
  • Koch AL. Multistep kinetics: choice of models for growth of bacteria. J Theor Biol 1982; 98: 401–17.
  • Koch AL. Microbial physiology and ecology of slow growth. Microbiol Molec Biol Rev 1997; 61: 305–18.
  • Grover JP. Dynamics of competition in a variable environ-ment: experiments with two diatom species. Ecology 1988; 69: 408–17.
  • Grover JP. Resource competition in a variable environment: phytoplankton growing according to Monod's model. Am Nat 1990; 136: 771–89.
  • Gottschal JC. Growth kinetics and competition- some con-temporary comments. Antonie van Leeuwenhoek 1993; 63: 299–313.
  • Blackman FF. Optima and limiting factors. Ann Bot 1905; 19: 281–95.
  • Button DK. Biochemical basis for whole-cell uptake kinetics: specific affinity, oligotrophic capacity, and the meaning of the Michaelis-Menten constant. Appl Environm Microbiol 1991; 57: 2033–8.
  • Button DK. Nutrient-limited microbial growth kinetics: overview of recent advances. Antonie van Leeuwenhoek 1993; 63: 225–35.
  • McKay IC, Speekenbrink A. Implications of Freter's model of bacterial colonization. Infect Immun 1984; 44: 199–203.
  • Babloyantz A. Molecules, Dynamics and Life: An Introduc-tion to Self-Organization of Matter. Wiley, New York. 1986
  • Presser KA, Ratkowsky DA, Ross T. Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl Environ Microbiol 1997; 63: 2355–60.
  • Tan Y, Wang Z-X, Marshall KC. Modeling substrate inhibi-tion of microbial growth. Biotech Bioeng 1996; 52: 602–8.
  • Frank SA. Spatial polymorphism of bacteriocines and other allelopathic traits. Evol Ecol 1994; 8: 369–86.
  • Kirschner DE, Blaser MJ. The dynamics of Helicobacter pylori infection in the human stomach. J Theor Biol 1995; 176: 281–90.
  • Kawasaki K, Mochizuki A, Matsushita M, Umeda T, Shige-sada N. Modelling spatio-temporal patterns generated by Bacillus subtilis. J Theor Biol 1997; 188: 177–85.
  • Gray KM. Extracellular communication and group be-haviour in bacteria. Trends Microbiol 1997; 5: 184–8.
  • Sieburg HB, McCutchan JA, Clay O, Caballero L, OstLund JJ. Simulation of HIV-infection in artificial immune system. Physica D 1990; 45: 208–28.