3,287
Views
23
CrossRef citations to date
0
Altmetric
Research Article

The Microbial Ecology of Dental Caries

Pages 138-148 | Published online: 11 Jul 2009

References

  • Locker D, Clarke M, Payne B. Self-perceived oral health status, psychological well-being and life satisfaction in an older population. J Dent Res 2000; 79: 970–5.
  • Finlay BB, Falkow S. Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 1997; 61: 136–69.
  • Brumell JH, Steele-Mortimer O, Finlay BB. Bacterial invasion. Force feeding by Salmonella. Curr Biol 1999; 9: R277–80.
  • Meyer TF. Pathogenic neisseriae: complexity of pathogen-host cell interplay. Clin Inf Dis 1999; 28: 433–41.
  • Rosenberg R, ed. Microbial Ecology and Infectious Disease. Washington: American Society for Microbiology, Washington, DC, 1999.
  • Keene HJ, Folsom KS, Basel DA, Puente ES. Primary reservoirs of Streptococcus mutans and their relationship to caries experience in adults with good oral health. Oral Microbiol Immunol 1990; 5: 19–23.
  • Caufield PW, Cutter GR, Dasanayake AP. Initial acquisition of mutans streptococci by infants: evidence for a discrete window of infectivity. J Dent Res 1993; 72: 37–45.
  • Redmo Emanuelsson I, Wang X. Demonstration of identical strains of mutans streptococci within Chinese families by genotyping. Eur J Oral Sci 1998; 106: 788–94.
  • Redmo Emanuelsson I, Thorhqvist E. Genotypes of mutans streptococci tend to persist in their host for several years. Caries Res 2000; 34: 133–9.
  • KOhler B, Andreen I, Jonsson B. The effect of caries preven-tive measures in mothers on dental caries and the oral presence of the bacteria Streptococcus mutans and lacto-bacilli in their children. Arch Oral Biol 1984; 29: 879–83.
  • KOhler B, Andreen I, Jonsson B. The earlier the colonization by mutans streptococci, the higher the caries prevalence at 4 years of age. Oral Microbiol Immunol 1988; 3: 14–7.
  • Reichmann P, König A, Linares J, Alcaide F, Tenover FC, McDougal L, Swidsinski S, Hakenbeck R. A global gene pool for high-level cephalosporin resistance in commensal Streptococcus species and Streptococcus pneumoniae. J Infect Dis 1997; 176: 1001–12.
  • Hackenback R, König A, Kern I, van der Linden M, Keck W, Billot-Klein D, Legrand R, Scoot B, Gutman L. Acquisi-tion of five high Mr penicillin-binding protein variants of high-level 13-lactam resistance from Streptococcus mitis to Streptococcus pneumoniae. J Bacteriol 1998; 180: 1831–40.
  • Poulsen K, Reinholdt J, Jespergaard C, Boye K, Brown TA, Hauge M, Kilian M. A comprehensive genetic study of streptococcal immunoglobulin A 1 proteases: evidence for recombination within and between species. Infect Immun 1998; 66: 181–90.
  • Hanley SA, Aduse-Opoku J, Curtis M. A 55-Kilodalton immunodominant antigen of Porphyromonas gingivalis has arisen via horizontal gene transfer. Infect Immun 1999; 67: 1157–71.
  • Bowden GHW. Which bacteria are cariogenic in humans? In: Johnson NW, ed Risk Markers for Oral Diseases, Vol 1 Dental Caries. Cambridge: Cambridge University Press, 1991: 266–86.
  • Bowden GHW, Edwardsson S. Oral ecology and dental caries. In: Thylstrup A, Fejerskov O, eds. Textbook of Clinical Cariology, 2nd Ed. Copenhagen: Munksgaard, 1996: 45–69.
  • Marsh PD. Microbiology of dental plaque and its significance in health and disease. Adv Dent Res 1994; 8: 263–71.
  • Van Houte J. Role of microorganisms in caries etiology. J Dent Res 1994; 73: 672–81.
  • Hamilton IR. Ecological basis for dental caries. In: Ellen R, Kuramitsu H, eds. Oral Bacterial Ecology: The Molecular Basis. Wymondham: Horizon Scientific Press, 2000: 219–74.
  • Milnes AR, Bowden GH. The microflora associated with the developing lesions of nursing caries. Caries Res 1985; 19: 289–97.
  • van Ruyven FOJ, Lingstrom P, van Houte J, Kent R. Relationship among mutans streptococci, 'low pH' bacteria and iodophilic polysaccharide-producing bacteria in dental plaque and early enamel caries in humans. J Dent Res 2000; 79: 778–84.
  • Burne RA. Oral streptococci... products of their environment. J Dent Res 1998; 77: 445–52.
  • Marsh PD, Bowden GHW. Microbial community interactions in biofilms. In: Lappin-Scott H, Gilbert P, Wilson M, Allison D. eds, Community Structure and Co-operation in Biofilms. Society for General Microbiology Symposium series. Cambridge:Cambridge University Press, 2000: in press.
  • Burne RA, Chen TM, Penders JEC. Analysis of gene expression in Streptococcus mutans biofilms in vitro. Adv Dent Res 1997;11: 100–9.
  • Li Y-H, Chen Y-YM, Burne RA. Regulation of urease gene expression by Streptococcus salivarius growing in biofilms. Environ Microbiol 2000; 2: 169–77.
  • Svensäter G, Sjogreen B, Hamilton IR. Multiple stress responses in Streptococcus mutans and the induction of general and stress-specific proteins. Microbiology 2000; 146: 107–17.
  • Marsh PD, Bradshaw DJ. Physiological approaches to the control of oral biofilms. Adv Dent Res 1997; 11: 176–85.
  • Ofek I, Doyle RJ. Adhesion of bacteria to oral tissues. In: Bacterial Adhesion to Cells and Tissues. London: Chapman and Hall, London, 1994:195–238.
  • Bowden GHW, Li Y-H. Nutritional influences on biofilm development. Adv Dent Res 1997; 11: 81–99.
  • Bowden GHW, Hamilton IR. Survival of oral bacteria. Crit Rev Oral Biol Med 1998; 9: 54–85.
  • Kolenbrander PE, Anderson RN, Clemans DL, Whittaker CJ, Klier CM. Potential role of functionally similar coaggre-gation mediators in bacterial succession. In: Newman HN, Wilson M, eds Dental Plaque Revisited Oral Biofilms in Health and Disease. Cardiff: Bioline, 1999: 171–86.
  • Van der Hoeven JS, de Jong MH, van Nieuw Amerongen A. Growth of oral microflora on saliva from different glands. Microb Ecol Hlth Dis 1989; 2: 171–80.
  • Van der Hoeven JS, Camp PJ. Synergistic degradation of mucin by Streptococcus oralis and Streptococcus sanguis in mixed chemostat cultures. J Dent Res 1991; 70: 1041–4.
  • Bradshaw DJ, Homer KA, Marsh PD, Beighton D. Metabolic cooperation in oral microbial communities during growth on mucin. Microbiology 1994; 140: 3407–12.
  • Byers HL, Tarelli E, Homer KA, Beighton D. Isolation and characterisation of sialidase from a strain of Streptococcus oralis. J Med Microbiol 2000; 49: 235–44.
  • van Palenstein Helderman WH, Matee MI, van der Hoeven JS, Mikx FH. Cariogenicity depends more on diet than the prevailing streptococcus species. J Dent Res 1996; 75: 535–45.
  • Scannapieco FA. Saliva-bacterium interactions in oral microbial ecology. Crit Rev Oral Biol Med 1994; 5: 203–48.
  • Rudney JD. Does variability in salivary protein concentrations influence oral microbial ecology and oral health? Crit Rev Oral Biol Med 1995; 6: 343–67.
  • Marcotte H, Lavoie MC. Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol Mol Biol Rev 1998; 62: 71–109.
  • Tenovuo J. Antimicrobial function of human saliva-how important is it for oral health? Acta Odontol Scand 1998; 56: 250–6.
  • Helmerhorst EJ, Hodgson R, van't Hof W, Veerman ECI, Allison C, van Nieuw Amerongen A. The effects of histatin-derived basic antimicrobial peptides on oral biofilms. J Dent Res 1999; 78: 1245–50.
  • Ayad M, van Wuyckhuyse BC, Minaguchi K, Raubertas RF, Bedi GS, Billings RJ, Bowen WH, Tabak LA. The association of basic proline-rich peptides in saliva from the human parotid gland with caries experience. J Dent Res 2000; 79: 976–82.
  • Dawes C, Watanabe S, Biglow-Lecomte P, Dibdin GH. Estimation of the velocity of the salivary film at some different locations in the mouth. J Dent Res 1989; 68: 1479–82.
  • Macpherson LMD, Dawes C. Effects of salivary film velocity on pH changes in artificial plaque containing Streptococ-cus oralis, after exposure to sucrose. J Dent Res 1991; 70: 1230–4.
  • Dawes C, Macpherson LMD. The distribution of saliva and sucrose around the mouth during use of chewing gum and the implications for the site-specificty of caries and calculus deposition. J Dent Res 1993; 72: 852–7.
  • Fejerskov O, Ekstrand J, Burt BA. eds. Fluoride in dentistry. Copenhagen: Munksgaard, Copenhagen 1996.
  • Bowden GHW, Ellwood DC, Hamilton IR. Microbial ecology of the oral cavity. In: Alexander M, ed Advances in Microbial Ecology, vol 3. New York: Plenum Press, 1979: 135–217.
  • Theilade E. Factors controlling the microflora of the healthy mouth. In: Hill MJ, Marsh PD, eds. Human Microbial Ecology. Boca Raton: CRC Press Inc., 1990: 2–48.
  • Weatherell JA, Robinson C, Hallsworth AS. Variations in the chemical composition of human enamel. J Dent Res 1974; 53: 180–92.
  • Li J, Nakagaki H, Tsuboi S, Kato S, Huang S, Mukai M, Robinson C, Strong M. Fluoride profiles in different sur-faces of human permanent molar enamels from a naturally fluoridated and a non-fluoridated area. Archs Oral Biol 1994; 39: 727–31.
  • Tucker K, Adams M, Shaw L, Smith AJ. Human enamel as a substrate for in vitro acid dissolution studies: influence of tooth surface and morphology. Caries Res 1998; 32: 135–40.
  • Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev 1986; 50: 353–80.
  • Lang KP, Hotz PR, Gusberti F, Joss A. Longitudinal, clinical and microbiological study on the relationship be-tween infection with Streptococcus mutans and the develop-ment of caries in humans. Oral Microbiol Immunol 1987; 2: 39–47.
  • Radford JR, Ballantyne HM, Nugent Z, Beighton D, Robertson M, Longbottom C, Pitts NB. Caries-associated micro-organisms in infants from different socio-economic backgrounds in Scotland. J Dent 2000; 28: 307–12.
  • Sigurj6ns H, Magnnsdóttir MO, Holbrook WP. Cariogenic bacteria in a longitudinal study of approximal caries. Caries Res 1995; 29: 42–5.
  • Boyar RM, Thylstrup A, Holmen L, Bowden GHW. The microflora associated with the development of initial enamel decalcification below orthodontic bands in vivo in children living in a water-fluoridated area. J Dent Res 1989; 68: 1734–8.
  • Nyvad B, Kilian M. Microflora associated with experimental root surface caries in humans. Infect Immun 1990; 58: 1628–33.
  • Marsh PD, Featherstone A, McKee AS, Hallsworth AS, Robinson C, Weatherell JA, Newman HN, Pitter AFV. A microbiologcal study of early caries of approximal surfaces in schoolchildren. J Dent Res 1989; 68: 1151–4.
  • Batty I. Actinomyces odontolyticus, a new species of actino-mycete regularly isolated from deep carious dentine. J Pathol Bacteriol 1958; 75: 455–9.
  • Sarkonen N, Könönen E, Summanen P, Kanervo A, Takala A, Jousimies-Somer H. Oral colonization with Act inomyces species by two years of age. J Dent Res 2000; 79: 864–7.
  • Boyar R, Bowden GHW. The microflora associated with the progression of incipient caries lesions in teeth of children living in a water-fluoridated area. Caries Res 1985; 19: 298–306.
  • Bowden GH, Ekstrand J, McNaughton B, Challacombe SJ. The association of selected bacteria with the lesions of root surface caries. Oral Microbiol Immunol 1990; 5: 346–51.
  • Bowden GHW. Microbiology of root surface caries in humans. J Dent Res 1990; 96: 1205–10.
  • Schiipbach P, Osterwalder V, Guggenheim B. Human root caries: microbiota in plaque covering sound, carious and arrested carious root caries. Caries Res 1995; 29: 382–95.
  • Schiipbach P, Osterwalder V, Guggenheim B. Human root caries: microbiota of a limited number of root caries lesions. Caries Res 1996; 30: 52–64.
  • Brailsford SR, Lynch E, Beighton D. The isolation of Acti-nomyces naeslundii from sound root surfaces and root cari-ous lesions. Caries Res 1998; 32: 100–6.
  • Sansone C, Van Houte J, Joshipura K, Kent R, Margolis HC. The association of mutans streptococci and non-mutans streptococci capable of acidogenesis at low pH with dental caries on enamel and root caries. J Dent Res 1993; 72: 508–16.
  • Mikx FMH, van der Hoeven JS, König KG, Plasschaert MM, Guggenheim B. Establishment of defined microbial ecosystems in germ-free rats. Caries Res 1972; 6: 211–23.
  • Mikx FHM, van der Hoeven JS, Walker GJ. Microbial symbiosis in dental plaque studied in gnotobiotic rats and in the chemostat. In: Stiles HM, Loesche WJ, O'Brien TC, eds Microbial Aspects of Dental Caries. Sp.Supplement Micro-biology Abstracts Vol III. Washington: Information retrieval Inc., Washington 1976:763–71.
  • van der Hoeven JS, Toorop Al, Mikx FHM. Symbiotic relationship of Veillonella akalescens and Streptococcus mu-tans in dental plaque in gnotobiotic rats. Caries Res 1978; 12: 142–7.
  • Marquis RE. Oxygen metabolism, oxidative stress and acid-base physiology of dental plaque biofilms. J Ind Microbiol 1995; 15: 198–207.
  • Sissons CH, Hancock EM. Urease activity in Streptococcus salivarius at low pH. Archs Oral Biol 1993; 38: 507–16.
  • Morou-Bermudez E, Rune RA. Genetic and physiologic characterization of urease of Actinomyces naeslundii. Infect Immun 1999; 67: 504–12.
  • Clancy KA, Pearson S, Bowen WH, Burne RA. Characterization of recombinant, ureolytic Streptococcus mutans demonstrates an inverse relationship between dental plaque ureolytic capacity and cariogenicity. Infect Immun 2000; 68: 2621–9.
  • Sissons CH, Wong L, Shu M. Factors affecting the resting pH of in vitro human microcosm dental plaque and Strepto-coccus mutans biofilms. Archs Oral Biol 1998; 43: 93–102.
  • Imfeld I, Birkhed D, Lingstrom P. Effect of urea in sugar-free chewing gums on pH recovery in human dental plaque evaluated with three different methods. Caries Res 1995; 29: 172–80.
  • Peterson S, Woodhead J, Crall J. Caries resistance in children with chronic renal failure; plaque pH, salivary pH and salivary composition. Pediatr Res 1985; 19: 796–9.
  • Bowden GHW. Oral biofilm an archive of past events? In: Newman HN, Wilson M, eds Dental Plaque Revisited Oral Biofilms in Health and Disease. Cardiff: Bioline, 1999: 211–35.
  • Bowden GHW, Nolette N, Ryding H, Cleghorn BM. The diversity and distribution of the predominant ribotypes of Actinomyces naeslundii genospecies 1 and 2 in samples from enamel and from healthy and carious root surfaces of teeth. J Dent Res 1999; 78: 1800–9.
  • Arber W. Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol Rev 2000; 26: 1–7.
  • Westegren G, Krasse B, Birkhed D, Edwardsson S. Genetic transfer of markers for sorbitol (D-glucitol) metabolism in oral streptococci. Arch Oral Biol 1981; 26: 403–7.
  • Colby SM, Harrington DJ, Russell RRB. Identification and genetic characterisation of melibiose-negative isolates of Streptococcus mutans. Caries Res 1995; 29: 407–12.
  • Haubek D, Dirienzo JM, Tinoco EM, Westergaard J, Lopez NJ, Chung C-P, et al. Racial tropism of a highly toxic clone of Actinobacillus actinomycetemcomitans associated with ju-venile periodontitis. J Clin Microbiol 1997; 35: 3037–42.
  • Acton RT, Dasanayake AP, Harrison RA, Li Y, Roseman JM, Go RC, Wiener H, Caufield PW. Associations of MHC genes with levels of caries-inducing organisms and caries severity in African-American women. Hum Immunol 1999; 60: 984–9.
  • Rainey PB, Moxon ER, Thompson IP. Intraclonal polymor-phism in bacteria. In: Gwynfryn Jones J, ed Advances in Microbial Ecology, Vol 13. New York: Plenum Press, 1993: 263–300.
  • Trahan L. Xylitol: a review of its action on mutans strepto-cocci and dental plaque-its clinical significance. Int Dent J 1995; 45: 77–92.
  • Bearson S, Bearson B, Foster JW. Acid stress responses in enterobacteria. FEMS Microbiol Lett 1997; 147: 173–80.
  • Hecker M, Volker U. Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the sigma B regulon. Mol Microbiol 1998; 29: 1129–36.
  • Segal G, Ron EZ. Regulation of heat shock response in bacteria. Ann N Y Acad Sci 1998; 851: 147–51.
  • Hamilton IR, Svensäter G. Acid-regulated proteins induced by Streptococcus mutans and other oral bacteria during acid shock. Oral Microbiol Immunol 1998; 13: 292–300.
  • Dunny GM, Winans SC. eds, Cell-cell Signaling in Bacteria. Washington:American Society for Microbiology Press, Washington, DC, 1999.
  • Liljemark WF, Bloomquist CG, Reilly BE, Bernards CJ, Townsend DW, Pennock AT, LeMoine JL. Growth dynam-ics in a natural biofilm and its impact on oral disease management. Adv Dent Res 1997; 11: 14–23.
  • Caldwell DE, Atuku E, Wilkie DC, Wivcharuk KP, Karthikeyan S, Korber DR, Schmid DF, Wolfaardt GM. Germ theory vs community theory in understanding and controlling the proliferation of biofilms. Adv Dent Res 1997; 11: 4–13.
  • Thylstrup A, Fejerskov O. Clinical and pathological features of dental caries. In: Thylstrup A, Fejerskov O, eds Text-book of Clinical Cariology, 2nd. Ed. Copenhagen: Munks-gaard, Copenhagen. 1996: 1 1 1–48.
  • Ingram GS, Silverstone LM. A chemical and histological study of artificial caries in human dental enamel in vitro. Caries Res 1981; 15: 393–8.
  • Bowden GH, Spiers RL, Nash R. Modification of the release of calcium and phosphate from enamel by deposits of dex-tran-producing streptococci. Caries Res 1972; 6: 81–2.
  • Rose RK, Turner SJ, Dibdin GH. Effect of pH and calcium concentration on calcium diffusion in streptococcal model plaque biofilms. Archs Oral Biol 1997; 42: 795–800.
  • Assinder SJ, Dibdin GH, Marshall M, Shellis P. An in vitro system for the analysis of changes in depth distribution of diffusates in bacterial films. Caries Res 1998; 32: 255–61.
  • Guggenheim B, Schroeder HE. Biochemical and morphological aspects of extracellular polysaccharides produced by cariogenic streptococci. Hely Odont Acta 1967; II: 131–51.
  • Cury JA, Rebello MAB, Del Bel Cury AA. In situ relationship between sucrose exposure and the composition of dental plaque. Caries Res 1997; 31: 356–60.
  • Zero DT, van Houte J, Russo J. The intra-oral effect on enamel demineralization of extracellular matrix material synthesized from sucrose by Streptococcus mutans. J Dent Res 1986; 65: 918–23.
  • Dibdin GH, Shellis RP. Physical and biochemical studies of Streptococcus mutans sediments suggest a new factor linking cariogenicity of plaque with its extracellular polysaccharide content. J Dent Res 1988; 67: 890–5.
  • Van Houte J, Russo J, Prostak KS. Increased pH-lowering ability of Streptococcus mutans cell masses associated with extracellular glucan-rich matrix material and the mechanisms involved. J Dent Res 1989; 68: 451–9.
  • Margolis HC, Moreno EC. Composition and cariogenic potential of dental plaque fluid. Crit Rev Oral Biol Med 1994; 5: 1–25.
  • Carey CM, Chow LC, Tatevossian A, Vogel GL. Extracellular potassium concentrations in human dental plaque fluid recovered from single sites. Archs Oral Biol 1988a; 33: 493–8.
  • Carey CM, Gregory TM, Tatevossian A, Vogel GL. The buffer capacity of single-site resting, human dental-plaque fluid. Archs Oral Biol 1988b; 33: 487–92.
  • Vogel GL, Carey CM, Chow LC, Tatevossian A. Micro-analysis of plaque fluid from single-site fasted plaque. J Dent Res 1990; 69: 1316–23.
  • Keevil CW, West AA, Bourne N, Marsh PD. Inhibition of the synthesis and secretion of extracellular glucosyl- and fructosyltransferase in Streptococcus sanguis by sodium ions. J Gen Microbiol 1984; 130: 77–82.
  • Wang YB, Germaine GR. Effects of pH, potassium, magne-sium, and bacterial growth phase on lysozyme inhibition of glucose fermentation by Streptococcus mutans 10449. J Dent Res 1993; 72: 907–11.
  • Iwami Y, Guha-Chowhury N, Yamada T. Effect of sodium and potassium ions on intracellular pH and proton excretion in glycolyzing cells of Streptococcus mutans NCTC 10449 under strictly anaerobic conditions. Oral Microbiol Immunol 1997; 12: 77–81.
  • Russell JB, Diez-Gonzalez F. The effects of fermentation acids on bacterial growth. Adv Micro Physiol 1998; 39: 205–34.
  • Barnard JP, Stinson MW. Influence of environmental conditions on hydrogen peroxide formation by Streptococcus gor-donii. Infect Immun 1999; 67: 6558–64.
  • Wood SR, Kirkham J, Marsh PD, Shore RC, Nattress B, Robinson C. Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res 2000; 79: 21–7.
  • Mattila ML, Rautava P, Silanpää M, Paunio P. Caries in five-year-old children and associations with family-related factors. J Dent Res 2000; 79: 875–81.
  • Radford JR, Ballantyne HM, Nugent Z, Beighton D, Robertson M, Longbottom C, Pitts NB. Caries-associated microorganisms in infants from different socio-economic backgrounds in Scotland. J Dent 2000; 28: 307–12.
  • Gronroos L, Saarela M, Matto J, Tanner-Salo U, Vuorela A, Alaluusua S. Mutacin production by Streptococcus mu-tans may promote transmission of bacteria from mother to child. Infect immun 1998; 66: 2595–600.
  • Li Y, Wang W, Caufield PW. The fidelity of mutans strepto-cocci transmission and caries status correlate with breast-feeding experience among Chinese families. Caries Res 2000; 34: 123–32.
  • Kohler B, Krasse B. Human strains of mutans streptococci show different cariogenic potential in the hamster model. Oral Microbiol Immunol 1990; 5: 177–80.
  • Krull RE, Chen P, Novak J, Kirk M, Barnes S, Baker J, Krishna NR, Caufield PW. Biochemical structural analysis of the lantibiotic mutacin II. J Biol Chem 2000; 275: 15845–50.
  • Crowley PJ, Fischlschweiger W, Coleman SE, Bleiweis AS. Intergeneric bacterial coaggregations involving mutans strep-toccci and oral actinomyces. Infect Immun 1987; 55: 2695–700.
  • McBride BC, van der Hoeven JS. Role of bacterial adherence in colonization of the oral cavities of gnotobiotic rats infected with Streptococcus mutans and Veillonella akales-cens. Infect Immun 1981; 33: 467–72.
  • Johansson I, Birkhed D. Diet and the caries process. In: Thylstrup A, Fejerskov O, eds. Textbook of Clinical Cariol-ogy, 2nd Ed. Copenhagen: Munksgaard, 1996: 283–99.
  • Lingstrom P, van Ruyven FOJ, van Houte J, Kent R. The pH of dental plaque in its relation to early enamel caries and dental plaque flora in humans. J Dent Res 2000; 79: 770–7.
  • Bradshaw DJ, Marsh PD. Analysis of pH-driven disruption of oral microbial communities in vitro. Caries Res 1998; 32: 456–62.
  • Shapiro JA, Dworkin M. eds. Bacteria as Multicellular Organisms. New York: Oxford University Press, New York, 1997.
  • Scheie A, Luan W-M, Dahlén G, Fejerskov O. Plaque pH and microflora of dental plaque on sound and carious root surfaces. J Dent Res 1996; 75: 1901–8.
  • Svensäter G, Larsson U-B, Grief ECG, Cvitkovitch DG, Hamilton IR. Acid tolerance response and survival by oral bacteria. Oral Microbiol Immunol 1997; 12: 266–73.
  • Edwardsson S. Bacteriological studies on deep areas of carious dentine. Odont Revy 1974; 25 (Supp1.32): 1–143.
  • Tjäderhane L, Larjava H, Sorsa T, Uitto V-J, Larmas M, Salo T. The activation and function of host matrix metallo-proteinases in dentine matrix breakdown in caries lesions. J Dent Res 1998; 77: 1622–9.
  • McGrady JA, Butcher WG, Beighton D, Switalski LM. Specific and charge interactions mediate collagen recognition by oral lactobacilli. J Dent Res 1995; 74: 649–57.
  • Scheie A. Chemoprophylaxis of dental caries. In: Thylstrup A, Fejerskov O, eds Textbook of Clinical Cariology, 2nd. Ed. Copenhagen: Munksgaard, 1996: 311–24.
  • Hajishengallis G, Michalek SM. Current status of a mucosal vaccine against dental caries. Oral Microbiol Immunol 1999; 14: 1–20.
  • Hillman JD, Brooks TA, Michalek SM, Harmon CC, Snoep JL, Der Weijden CC. Construction and characterization of an effector strain of Streptococcus mutans for replacement therapy of dental caries. Infect Immun 2000; 68: 543–9.