210
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Development and Function of Intestinal B and T Cells

Pages 110-127 | Published online: 11 Jul 2009

References

  • Brandtzaeg P. History of oral tolerance and mucosal immu-nity. Ann NY Acad Sci 1996; 778: 1–27.
  • Brandtzaeg P. Development and basic mechanisms of hu-man gut immunity. Nutr Rev 1998; 56: 5–18.
  • Garside P, Khoruts A, Mowat AM. Oral tolerance in dis-ease. Gut 1999; 44: 137–42.
  • Duchmann R, Kaiser I, Hermann E, Mayet W, Ewe K, Meyer zum Biischenfelde KH. Tolerance exists towards resi-dent intestinal flora but is broken in active inflammatory bowel disease. Clin Exp Immunol 1995; 102: 448–55.
  • Duchmann R, Neurath M, Marker-Hermann E, Meyer zum Bilschenfelde KH. Immune responses towards intestinal bac-teria-current concepts and future perspectives. Z Gastroen-terol 1997; 35: 337–46.
  • Duchmann R, Schmitt E, Knolle P, Meyer zum Bilschen-felde KH, Neurath M. Tolerance towards resident intestinal flora in mice is abrogated in experimental colitis and restored by treatment with interleukin-10 or antibodies to interleukin-12. Eur J Immunol 1996; 26: 934–8.
  • Duchmann R, May E, Heike M, Knolle P, Neurath M, Meyer zum Buschenfelde KH. T cell specificity and cross reactivity towards enterobacteria, bacteroides, bifidobac-terium, and antigens from resident intestinal flora in hu-mans. Gut 1999; 44: 812–8.
  • Strobel S, Mowat AM. Immune responses to dietary anti-gens: oral tolerance. Immunol Today Rev 1998; 19: 173–81.
  • Mowat AM, Weiner L. Oral tolerance: physiological basis and clinical applications. pp. 587–618. In: Mucosal Im-munology, 2'd Ed. (Eds.: Ogra PL, Mestecky J, Lamm ME, Strober W, Bienenstock, J, McGhee JR), Academic Press, London, 1999.
  • Brandtzaeg P, Nilssen DE, Rognum TO, Thrane PS. On-togeny of the mucosal immune system and IgA deficiency. Gastroenterol Clin North Am 1991; 20: 397–439.
  • Holt PG. Postnatal maturation of immune competence dur-ing infancy and childhood. Pediatr Allergy Immunol 1995; 6: 59–70.
  • MacDonald TT, Spencer J. Development of gastrointestinal immune function and its relationship to intestinal disease. Curr Opin Gastroenterol 1993; 9: 946–52.
  • Cebra JJ, Jiang HQ, Sterzl J, Tlaskalovd-Hogenová H. The role of mucosal microbiota in the development and mainte-nance of the mucosal immune system. In: Mucosal Im-munology, 2nd Ed. (Eds.: Ogra PL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR). London: Academic Press, 1999: 267–80.
  • Brandtzaeg P, Farstad IN, Johansen FE, Morton HC, Nord-haug IN, Yamanaka T. The B-cell system of human mu-cosae and exocrine glands. Immunol Rev 1999; 171: 45–87.
  • Neutra MR, Mantis NJ, Frey A, Giannasca PJ. The compo-sition and function of M cell apical membranes: implications for microbial pathogenesis. Semin Immunol 1999; 11: 171–81.
  • Brandtzaeg P, Farstad IN, Helgeland L. Phenotypes of T cells in the gut. Chemical Immunol 1998; 71: 1–26.
  • Brandtzaeg P, Baklien K, Bjerke K, Rognum TO, Scott H, Valnes K. Nature and properties of the human gastrointesti-nal immune system. pp. 1–85. In: Immunology of the Gas-trointestinal Tract, vol. 1. : Miller K, Nicklin, S), CRC Press, Boca Raton, 1987.
  • Spencer J, MacDonald TT. Ontogeny of human mucosal immunity.pp. 23–50. In: Ontogeny of the Immune System of the Gut. : MacDonald TT), CRC Press, Boca Raton, 1990.
  • Parrot DMV. The gut-associated lymphoid tissue and gas-trointestinal immunity. In: Ferguson A, MacSween NRM, eds. Immunological Aspects of the Liver and Gastrointesti-nal Tract. Lancaster: MTP Press 1976: 1–32.
  • Butcher EC, Rouse RV, Coffman RL, Nottenburg CN, Hardy RR, Weissman IL. Surface phenotype of Peyer's patch germinal center cells: implications for the role of germinal centers in B cell differentiation. J Immunol 1982; 129: 2698–707.
  • Holt PG, Clough JB, Holt BJ, Baron-Hay MJ, Rose AH, Robinson BW, Thomas WR. Genetic 'risk' for atopy is associated with delayed postnatal maturation of T-cell com-petence. Clin Exp Allergy 1992; 22: 1093–9.
  • Taylor S, Bryson YJ. Impaired production of K-interferon by newborn cells in vitro is due to a functionally immature macrophage. J Immunol 1985; 134: 1493–7.
  • Lewis DB, Yu CC, Meyer J, English BK, Kahn SJ, Wilson CB. Cellular and molecular mechanisms for reduced inter-leukin 4 and interferon-K production by neonatal T cells. J Clin Invest 1991; 87: 194–202.
  • Splawski JB, Lipsky PE. Cytokine regulation of im-munoglobulin secretion by neonatal lymphocytes. J Clin Invest 1991; 88: 967–77.
  • Ridge JP, Fuchs El, Matzinger P. Neonatal tolerance revis-ited: turning on newborn T cells with dendritic cells. Science 1996; 271: 1723–6.
  • Lu CY, Calamai EG, Unanue ER. A defect in the antigen-presenting function of macrophages from neonatal mice. Nature 1979; 282: 327–9.
  • Morris JF, Hoyer JT, Pierce SK. Antigen presentation for T cell interleukin-2 secretion is a late acquisition of neonatal B cells. Eur J Immunol 1992; 22: 2923–8.
  • Stoll BJ, Lee FK, Hale E, Schwartz D, Holmes R, Ashby R, Czerkinsky C, Nahmias Al Immunoglobulin secretion by the normal and the infected newborn infant. J Pediatr 1993; 122: 780–6.
  • Brandtzaeg P, Halstensen TS, Kett K, Krajci P, Kvale D, Rognum TO, Scott H, Sollid LM. Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes. Gastroenterology 1989; 97: 1562–84.
  • van der Heijden PJ, Stok W, Bianchi AT. Contribution of immunoglobulin-secreting cells in the murine small intestine to the total 'background' immunoglobulin production. Im-munology 1987; 62: 551–5.
  • Norderhaug IN, Johansen FE, Schjerven H, Brandtzaeg P. Regulation of the formation and external transport of secre-tory immunoglobulins. Crit Rev Immunol 1999; 19: 481–508.
  • Craig SW, Cebra JJ. Peyer's patches: an enriched source of precursors for IgA-producing immunocytes in the rabbit. J Exp Med 1971; 134: 188–200.
  • Guy-Grand D, Griscelli C, Vassalli P. The mouse gut T lymphocyte, a novel type of T cell. Nature, origin, and traffic in mice in normal and graft-versus-host conditions. J Exp Med 1978; 148: 1661–77.
  • Cuff CF, Cebra CK, Rubin DH, Cebra JJ. Developmental relationship between cytotoxic ///fl T cell receptor-positive intraepithelial lymphocytes and Peyer's patch lymphocytes. Eur J Immunol 1993; 23: 1333–9.
  • Dogan A, Dunn-Walters DK, MacDonald TT, Spencer J. Demonstration of local clonality of mucosal T cells in hu-man colon using DNA obtained by microdissection of im-munohistochemically stained tissue sections. Eur J Immunol 1996; 26: 1240–5.
  • Nanno M, Matsumoto S, Koike R, Miyasaka M, Kawaguchi M, Masuda T, Miyawaki S, Cai Z, Shimamura T, Fujiura Y, et al. Development of intestinal intraepithelial T lymphocytes is independent of Peyer's patches and lymph nodes in aly mutant mice. J Immunol 1994; 153: 2014–20.
  • Abreu-Martin MT, Targan SR. Regulation of immune re-sponses of the intestinal mucosa. Crit Rev Immunol 1996; 16: 277–309.
  • Jarry A, Cerf-Bensussan N, Brousse N, Selz F, Guy-Grand D. Subsets of CD3 + (T cell receptor ///fl or K/A) and CD3-lymphocytes isolated from normal human gut epithe-lium display phenotypical features different from their coun-terparts in peripheral blood. Eur J Immunol 1990; 20: 1097–103.
  • Lundqvist C, Baranov V, Hammarstrom S, Athlin L, Ham-marstrom ML. Intra-epithelial lymphocytes. Evidence for regional specialization and extrathymic T cell maturation in the human gut epithelium. Int Immunol 1995; 7: 1473–87.
  • Lynch S, Kelleher D, Feighery C, Weir DG, O'Farrelly C. Flow cytometric analysis of intraepithelial lymphocytes from human small intestinal biopsies reveals populations of CD4 + CD8 + and CD8im + cells. Eur J Gastroenterol Hepa-tol 1993; 5: 907–12.
  • Lefrancois L. Phenotypic complexity of intraepithelial lymphocytes of the small intestine. J Immunol 1991; 147: 1746–51.
  • Maloy KJ, Mowat AM, Zamoyska R, Crispe IN. Pheno-typic heterogeneity of intraepithelial T lymphocytes from mouse small intestine. Immunology 1991; 72: 555–62.
  • Helgeland L, Vaage if, Rolstad B, Halstensen TS, Midtvedt T, Brandtzaeg P. Regional phenotypic specialization of in-traepithelial lymphocytes in the rat intestine does not depend on microbial colonization. Scand J Immunol 1997; 46: 349–57.
  • Takimoto H, Nakamura T, Takeuchi M, Sumi Y, Tanaka T, Nomoto K, Yoshikai Y. Age-associated increase in number of CD4 + CD8 + intestinal intraepithelial lymphocytes in rats. Eur J Immunol 1992; 22: 159–64.
  • Guy-Grand D, Cuenod-Jabri B, Malassis-Seris M, Selz F, Vassalli P. Complexity of the mouse gut T cell immune system: identification of two distinct natural killer T cell intraepithelial lineages. Eur J Immunol 1996; 26: 2248–56.
  • Conan Y. Characteristics of nonepithelial cells in the epithe-lium of normal rat ileum. Scand J Gastroenterol 1972; 18 (Suppl.): 1–66.
  • Lundqvist C, Melgar S, Yeung MM, Hammarstrom S, Hammarstrom ML. Intraepithelial lymphocytes in human gut have lytic potential and a cytokine profile that suggest T helper 1 and cytotoxic functions. J Immunol 1996; 157: 1926–34.
  • Sydora BC, Mixter PF, Holcombe HR, Eghtesady P, Williams K, Amaral MC, Nel A, Kronenberg M. Intestinal intraepithelial lymphocytes are activated and cytolytic but do not proliferate as well as other T cells in response to mitogenic signals. J Immunol 1993; 150: 2179–91.
  • Viney JL, Kilshaw PJ, MacDonald TT. Cytotoxic ///fl + and K/A + T cells in murine intestinal epithelium. Eur J Immunol 1990; 20: 1623–6.
  • Flexman JP, Shellam GR, Mayrhofer G. Natural cytotoxic-ity, responsiveness to interferon and morphology of intra-ep-ithelial lymphocytes from the small intestine of the rat. Immunology 1983; 48: 733–41.
  • Roberts Al, O'Connell SM, Biancone L, Brolin RE, Ebert EC. Spontaneous cytotoxicity of intestinal intraepithelial lymphocytes: clues to the mechanism. Clin Exp Immunol 1993; 94: 527–32.
  • Ishikawa H, Li Y, Abeliovich A, Yamamoto S, Kaufmann SH, Tonegawa S. Cytotoxic and interferon K-producing ac-tivities of la T cells in the mouse intestinal epithelium are strain dependent. Proc Natl Acad Sci USA 1993; 90: 8204–8.
  • Barrett TA, Gajewski TF, Danielpour D, Chang EB, Bea-gley KW, Bluestone JA. Differential function of intestinal intraepithelial lymphocyte subsets. J Immunol 1992; 149: 1124–30.
  • Yamamoto M, Fujihashi K, Amano M, McGhee JR, Bea-gley KW, Kiyono H. Cytokine synthesis and apoptosis by intestinal intraepithelial lymphocytes: signaling of high den-sity '1 fl T cell receptor + and K Ã T cell receptor + T cells via T cell receptor-CD3 complex results in interferon-K and interleukin-5 production, while low density T cells undergo DNA fragmentation. Eur J Immunol 1994; 24: 1301–6.
  • Chardes T, Buzoni-Gatel D, Lepage A, Bernard F, Bout D. Toxoplasma gondii oral infection induces specific cytotoxic CD8 ///fi + Thy-1 + gut intraepithelial lymphocytes, lytic for parasite-infected enterocytes. J Immunol 1994; 153: 4596–603.
  • Fujihashi K, Yamamoto M, McGhee JR, Kiyono H. ri fiT cell receptor-positive intraepithelial lymphocytes with ON, CD8 - and CD4±, CD8 ± phenotypes from orally immunized mice provide Th2-like function for B cell re-sponses. J Immunol 1993; 151: 6681–91.
  • Bucy RP, Chen CL, Cihak J, Losch U, Cooper MD. Avian T cells expressing la receptors localize in the splenic sinu-soids and the intestinal epithelium. J Immunol 1988; 141: 2200–5.
  • Goodman T, Lefrancois L. Expression of the gamma-delta T-cell receptor on intestinal CD8± intraepithelial lymphocytes. Nature 1988; 333: 855–8.
  • Bandeira A, Itohara S, Bonneville M, Burlen-Defranoux O, Mota-Santos T, Coutinho A, Tonegawa S. Extrathymic origin of intestinal intraepithelial lymphocytes bearing T-cell antigen receptor K.%. Proc Natl Acad Sci USA 1991; 88: 43–7.
  • Guy-Grand D, Cerf-Bensussan N, Malissen B, Malassis-Seris M, Briottet C, Vassalli P. Two gut intraepithelial CD8± lymphocyte populations with different T cell recep-tors: a role for the gut epithelium in T cell differentiation. J Exp Med 1991; 173: 471–81.
  • Vmey JL, MacDonald TT, Kilshaw PJ. T-cell receptor ex-pression in intestinal intra-epithelial lymphocyte subpopula-tions of normal and athymic mice. Immunology 1989; 66: 583–7.
  • Mosley RL, Styre D, Klein JR. Differentiation and func-tional maturation of bone marrow-derived intestinal epithe-lial T cells expressing membrane T cell receptor in athymic radiation chimeras. J Immunol 1990; 145: 1369–75.
  • Poussier P, Julius M. Thymus independent T cell develop-ment and selection in the intestinal epithelium. Annu Rev Immunol 1994; 12: 521–53.
  • Mosley RL, Klein JR. Peripheral engraftment of fetal intes-tine into athymic mice sponsors T cell development: direct evidence for thymopoietic function of murine small intestine. J Exp Med 1992; 176: 1365–73.
  • Kanamori Y, Ishimaru K, Nanno M, Maki K, Ikuta K, Nariuchi H, Ishikawa H. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit IL-7R+ Thyl ± lympho-hemopoietic progenitors develop. J Exp Med 1996; 184: 1449–59.
  • Moghaddami M, Cummins A, Mayrhofer G. Lymphocyte-filled villi: comparison with other lymphoid aggregations in the mucosa of the human small intestine. Gastroenterology 1998; 115: 1414–25.
  • Saito H, Kanamori Y, Takemori T, Nariuchi H, Kubota E, Takahashi-Iwanaga H, Iwanaga T, Ishikawa H. Generation of intestinal T cells from progenitors residing in gut crypto-patches. Science 1998; 280: 275–8.
  • Rocha B, von Boehmer H, Guy-Grand D. Selection of intraepithelial lymphocytes with CD8 ///// co-receptors by self-antigen in the murine gut. Proc Natl Acad Sci USA 1992; 89: 5336–40.
  • Lefrancois L, Olson S. A novel pathway of thymus-directed T lymphocyte maturation. J Immunol 1994; 153: 987–95.
  • Lin T, Matsuzaki G, Kenai H, Nakamura T, Nomoto K. Thymus influences the development of extrathymically derived intestinal intraepithelial lymphocytes. Eur J Im-munol 1993; 23 (8): 1968–74.
  • Helgeland L, Brandtzaeg P, Rolstad B, Vaage JT. Sequential development of intraepithelial la and rifi T lymphocytes expressing CD8r7fi in neonatal rat intestine: requirement for the thymus. Immunology 1997; 92: 447–56.
  • Lodinova-Zadnikova R, Sonnenbom U, Tlaskalova H. Pro-biotics and E. coli infections in man. Vet Q 1998; 20 (Suppl 3): S78–81.
  • Griffioen AW, Franklin SW, Zegers 13J, Rijkers GT. Expres-sion and functional characteristics of the complement recep-tor type 2 on adult and neonatal B lymphocytes. Clin Immunol Immunopathol 1993; 69: 1–8.
  • Dempsey PW, Allison ME, Akkaraju S, Goodnow CC, Fearon DT. C3d of complement as a molecular adjuvant bridging innate and acquired immunity. Science 1996; 271: 348–50.
  • Sagie E, Tarabulus J, Maeir DM, Freier S. Diet and devel-opment of intestinal IgA in the mouse. Isr J Med Sci 1974; 10: 532–4.
  • Knox WF. Restricted feeding and human intestinal plasma cell development. Arch Dis Child 1986; 61: 744–9.
  • Crabbé PA, Nash DR, Bazin H, Eyssen H, Heremans JF. Immunohistochemical observations on lymphoid tissues from conventional and germ-free mice. Lab Invest 1970; 22: 448–57.
  • Horsfall DJ, Cooper JM, Rowley D. Changes in the im-munoglobulin levels of the mouse gut and serum during conventionalisation and following administration of Salmonella typhimurium Aust J Exp Biol Med Sci 1978; 56: 727–35.
  • Lodinova R, Jouja V, Wagner V. Serum immunoglobulins and coproantibody formation in infants after artificial intes-tinal colonization with Escherichia coli 083 and oral lysozyme administration. Pediatr Res 1973; 7: 659–69.
  • Moreau MC, Ducluzeau R, Guy-Grand D, Muller MC. Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin. Infect Immun 1978; 121: 532–9.
  • Lodinová-Zddnikovd R, Cukrowskd B. Influence of oral colonization of the intestine with a non-enteropathogenic E. coli strain after birth on the frequency of infectious and allergic diseases after 10 and 20 years. Abstract 12.6. Im-munol Lett 1999; 69: 64 (only)
  • Wijesinha SS, Steer HW. Studies of the immunoglobulin-producing cells of the human intestine: the defunctionekl bowel. Gut 1982; 23: 211–4.
  • Reynolds JD, Morris B. The influence of gut function on lymphoid cell populations in the intestinal mucosa of lambs. Immunology 1983; 49: 501–9.
  • Nagao AT, Pilagallo MIDS, Pereira AB. Quantitation of salivary, urinary and faecal sIgA in children living in differ-ent conditions of antigenic exposure. J Trop Pediatr 1993; 39: 278–83.
  • Hogue SS, Ghosh S, Poxton IR. Differences in intestinal humoral immunity between healthy volunteers from UK and Bangladesh. Eur J Gastroenterol Hepatol. In press 2000.
  • Beatty DW, Napier B, Sinclair-Smith CC, McCabe K, Hughes El. Secretory IgA synthesis in kwashiorkor. J Clin Lab Immunol 1983; 12: 31–6.
  • Watson RR, McMurray DN, Martin P, Reyes MA. Effect of age, malnutrition and renutrition on free secretory com-ponent and IgA in secretion. Am J Clin Nutr 1985; 42: 281–8.
  • Kirjavainen PV, Gibson GR. Healthy gut microflora and allergy: factors influencing development of the microbiota. Ann Med 1999; 31: 288–92.
  • Kaila M, Isolauri E, Soppi E, Virtanen E, Laine S, Arvilommi H. Enhancement of the circulating antibody se-creting cell response in human diarrhea by a human Lacto-bacillus strain. Pediatr Res 1992; 32: 141–4.
  • Kaila M, Isolauri E, Saxelin M, Arvilommi H, Vesikari T. Viable versus inactivated lactobacillus strain GG in acute rotavirus diarrhoea. Arch Dis Child 1995; 72: 51–3.
  • Isolauri E, Joensuu J, Suomalainen H, Luomala M, Vesikari T. Improved immunogenicity of oral Dx RRV reassortant rotavirus vaccine by Lactobacillus casei GG. Vaccine 1995; 13: 310–2.
  • Yasui H, Kiyoshima J, Ushijima H. Passive protection against rotavirus-induced diarrhea of mouse pups born to and nursed by dams fed Bifidobacterium breve YIT4064. J Infect Dis 1995; 172: 403–9.
  • Malin M, Suomalainen H, Saxelin M, Isolauri E. Promotion of IgA immune response in patients with Crohn's disease by oral bacteriotherapy with Lactobacillus GG. Ann Nutr Metab 1996; 40: 137–45.
  • Prokesova L, Ladmanoyft P, techova D, §tépankova R, Kozáková H, Mlcková A, Kuklik R, Mára M. Stimulatory effects of Bacillus fitmus on IgA production in humans and mice. Abstract 11.5. Immunol Lett 1999; 69: 55–6.
  • André C, André F, Fargier MC. Distribution of IgAl and IgA2 plasma cells in various normal human tissues and in the jejunum of plasma IgA-deficient patients. Clin Exp Im-munol 1978; 33: 327–31.
  • Crago SS, et al. Distribution of IgAl-, IgA2-, and J chain-containing cells in human tissues. J Immunol 1984; 132: 16–8.
  • Jonard PP, Rambaud JC, Dive C, Vaerman JP, Galian A, Delacroix DL. Secretion of immunoglobulins and plasma proteins from the jejunal mucosa. Transport rate and origin of polymeric immunoglobulin A. J Clin Invest 1984; 74: 525–35.
  • Kett K, Brandtzaeg P, Radl J, Haaijman JJ. Different subclass distribution of IgA-producing cells in human lymphoid organs and various secretory tissues. J Immunol 1986; 136: 3631–5.
  • Burnett D, Crocker J, Stockley RA. Cells containing IgA subclasses in bronchi of subjects with and without chronic obstructive lung disease. Clin Pathol 1987; 40: 1217–20.
  • Miller F, Froland SS, Hvatum M, Radl J, Brandtzaeg P. Both IgA subclasses are reduced in parotid saliva from patients with AIDS. Clin Exp Immunol 1991; 83: 203–9.
  • Feltelius N, Hvatum M, Brandtzaeg P, Knutson L, Hällgren R. Increased jejunal secretory IgA and IgM in ankylosing spondylitis: normalization after treatment with sulfasalazine. J Rheumatol 1994; 21: 2076–81.
  • Kilian M, Reinholdt J, Lomholt H, Poulsen K, Frandsen EV. Biological significance of IgAl proteases in bacterial colonization and pathogenesis: critical evaluation of experi-mental evidence. APMIS 1996; 104: 321–38.
  • Mestecky J, Russell MW. IgA subclasses. Monogr Allergy 1986; 19: 277–301.
  • Tarkowski A, Lue C, Moldoveanu Z, Kiyono H, McGhee JR, Mestecky. Immunization of humans with polysaccharide vaccines induces systemic, predominantly polymeric IgA2-subclass antibody responses. J Immunol 1990; 144: 3770–8.
  • Kett K, Baklien K, Bakken A, Kral JG, Fausa 0, Brandtzaeg P. Intestinal B-cell isotype response in relation to local bacterial load: evidence for immunoglobulin A subclass adaptation. Gastroenterology 1995; 109: 819–25.
  • Brandtzaeg P, et al. Regional specialization in the mucosal immune system: what happens in the microcompartments? Immunol Today 1999; 20: 141–51.
  • Tyler BM, Cole MF. Characterization of the mucosal im-mune response in breast milk after peroral immunization of chimpanzees (Pan troglodytes) with Streptococcus mutans. Arch Oral Biol 1999; 44: 871–83.
  • Brandtzaeg P. Development of the mucosal immune system in humans. pp. 349–376. In: Recent Developments in Infant Nutrition,: Bindels JG, Goedhart AC, Visser HKA), Kluwer Academic Publishers, London, 1996.
  • Hahn-Zoric M, Fukonis F, Minoli I, Moro G, Carlsson B, Bottiger M, Raffia N, Hanson LA. Antibody responses to parenteral and oral vaccines are impaired by conventional and low protein formulas as compared to breast-feeding. Acta Paediatr Scand 1990; 79: 1137–42.
  • Pabst HF, Spady DW. Effect of breast-feeding on antibody response to conjugate vaccine. Lancet 1990; 336: 269–70.
  • Stephens S. Development of secretory immunity in breast fed and bottle fed infants. Arch Dis Child 1986; 61: 263–9.
  • Gleeson M, Cripps AW, Clancy RL, Hensley MJ, Dobson AJ, Firman DW. Breast feeding conditions a differential developmental pattern of mucosal immunity. Clin Exp Im-munol 1986; 66: 216–22.
  • Tappuni AR, Challacombe SJ. A comparison of salivary immunoglobulin A (IgA) and IgA subclass concentrations in predentate and dentate children and adults. Oral Microbiol Immunol 1994; 9: 142–5.
  • Renz H, Brehler C, Petzoldt S, Prinz H, Rieger CH. Breast feeding modifies production of SIgA cow's milk-antibodies in infants. Acta Paediatr Scand 1991; 80: 149–54.
  • Fitzsimmons SP, Evans MK, Pearce CL, Sheridan MJ, Wientzen R, Cole MF. Immunoglobulin A subclasses in infants' saliva and in saliva and milk from their mothers. J Pediatr 1994; 124: 566–73.
  • Avanzini MA, Plebani A, Monafo V, Pasinetti G, Teani M, Colombo A, Mellander L, Carlsson B, Hanson LA, Ugazio AG, Burgio GR. A comparison of secretory antibodies in breast-fed and formula-fed infants over the first six months of life. Acta Paediatr 1992; 81: 296–301.
  • Kramer DR, Cebra JJ. Early appearance of 'natural' mu-cosal IgA responses and germinal centers in suckling mice developing in the absence of maternal antibodies. J Immunol 1995; 154: 2051–62.
  • Periwal SB, Speaker TJ, Cebra JJ. Orally administered mi-croencapsulatekl reovirus can bypass suckled, neutralizing maternal antibody that inhibits active immunization of neonates. J Virol 1997; 71: 2844–50.
  • Woolverton CJ, Holt LC, Mitchell D, Sartor RB. Identifica-tion and characterization of rat intestinal lamina propria cells: consequences of microbial colonization. Vet Immunol Immunopathol 1992; 34: 127–38.
  • Ropke C, Everett NB. Kinetics of intraepithelial lymphocytes in the small intestine of thymus-deprived mice and antigen-deprived mice. Anat Rec 1976; 185: 101–8.
  • Ferguson A, Parrott DM. The effect of antigen deprivation on thymus-dependent and thymus-independent lymphocytes in the small intestine of the mouse. Clin Exp Immunol 1972; 12: 477–88.
  • Bandeira A, Mota-Santos T, Itohara S, Degermann S, Heusser C, Tonegawa S, Coutinho A. Localization of K/A T cells to the intestinal epithelium is independent of normal microbial colonization. J Exp Med 1990; 172: 239–44.
  • Helgeland L, Vaage if, Rolstad B, Midtvedt T, Brandtzaeg P. Microbial colonization influences composition and T-cell receptor V beta repertoire of intraepithelial lymphocytes in rat intestine. Immunology 1996; 89: 494–501.
  • Lin T, Matsuzaki G, Yoshida H, Kobayashi N, Kenai H, Omoto K, Nomoto K. CD3 CD8± intestinal intraepithe-lial lymphocytes (IEL) and the extrathymic development of IEL. Eur J Immunol 1994; 24: 1080–7.
  • Kawaguchi-Miyashita M, Shimizu K, Nanno M, Shimada S, Watanabe T, Koga Y, Matsuoka Y, Ishikawa H, Hashimoto K, Ohwaki M. Development and cytolytic function of intestinal intraepithelial T lymphocytes in anti-gen-minimized mice. Immunology 1996; 89: 268–73.
  • Spencer J, Dillon SB, Isaacson PG, MacDonald TT. T cell subclasses in fetal human ileum. Clin Exp Immunol 1986; 65: 553–8.
  • Kawaguchi M, Nanno M, Umesaki Y, Matsumoto S, Okada Y, Cai Z, Shimamura T, Matsuoka Y, Ohwaki M, Ishikawa H. Cytolytic activity of intestinal intraepithelial lymphocytes in germ-free mice is strain dependent and de-termined by T cells expressing gamma delta T-cell antigen receptors. Proc Natl Acad Sci USA 1993; 90: 8591–4.
  • Umesaki Y, Setoyama H, Matsumoto S, Okada Y. Expan-sion of rifi T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 1993; 79: 32–7.
  • Huleatt JW, Lefrancois L. Antigen-driven induction of CD11c on intestinal intraepithelial lymphocytes and CD8± T cells in vivo. J Immunol 1995; 154: 5684–93.
  • London SD, Cebra JJ, Rubin DH. Intraepithelial lymphocytes contain virus-specific, MHC-restricted cyto-toxic cell precursors after gut mucosal immunization with reovirus serotype 1/Lang. Reg Immunol 1989; 2: 98–102.
  • Offit PA, Dudzik KI. Rotavirus-specific cytotoxic T lymphocytes appear at the intestinal mucosal surface after rotavirus infection. J Virol 1989; 63: 3507–12.
  • Roberts SJ, Smith AL, West AB, Wen L, Findly RC, Owen MJ, Hayday AC. T-cell rifi ± and KA ± deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc Natl Acad Sci USA 1996; 93: 11774–9.
  • Umesaki Y, Okada Y, Matsumoto S, Imaoka A, Se-toyama H. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol Immunol 1995; 39: 555–62.
  • Balk SP, Ebert EC, Blumenthal RL, McDermott FV, Wucherpfennig KW, Landau SB, Blumberg RS. Oligo-clonal expansion and CD1 recognition by human intestinal intraepithelial lymphocytes. Science 1991; 253: 1411–5.
  • Gross GG, Schwartz VL, Stevens C, Ebert EC, Blumberg RS, Balk SP. Distribution of dominant T cell receptor fi chains in human intestinal mucosa. J Exp Med 1994; 180: 1337–44.
  • Regnault A, Cumano A, Vassalli P, Guy-Grand D, Kourilsky P. Oligoclonal repertoire of the CD8im and the CD8rifi TCR-///fl murine intestinal intraepithelial T lymphocytes: evidence for the random emergence of T cells. J Exp Med 1994; 180: 1345–58.
  • Van Kerckhove C, Russell GJ, Deusch K, Reich K, Bhan AK, DerSimonian H, Brenner MB. Oligoclonality of hu-man intestinal intraepithelial T cells. J Exp Med 1992; 175: 57
  • Helgeland L, Johansen FE, Utgaard JO, Vaage if, Brandtzaeg P. Oligoclonality of rat intestinal intraepithelial T lymphocytes: overlapping TCR fl-chain repertoires in the CD4 single-positive and CD4/CD8 double-positive sub-sets. J Immunol 1999; 162: 2683–92.
  • Regnault A, Levraud JP, Lim A, Six A, Moreau C, Cumano A, Kourilsky P. The expansion and selection of T cell receptor r 1 fi intestinal intraepithelial T cell clones. Eur J Immunol 1996; 26: 914–21.
  • Dunon D, Schwager J, Dangy JP, Cooper MD, Imhof BA. T cell migration during development: homing is not related to TCR V fi 1 repertoire selection. EMBO J 1994; 13: 808–15.
  • Nakamura T, Matsuzaki G, Takimoto H, Nomoto K. Age-associated changes in the proliferative response of rat intestinal intraepithelial leukocytes to bacterial antigens. Gastroenterology 1995; 109: 748–54.
  • Kimura Y, Sakai T, Takeuchi M, Matsumoto Y, Watan-abe K, Yuuki M, Takada T, Yoshikai Y. An unique CD4±CD8± intestinal intraepithelial lymphocyte specific for DnaK (Escherichia coli HSP70) may be selected by intestinal microflora of rats. Immunobiology 1996–97; 196: 550–66.
  • Bland PW, Warren LG. Antigen presentation by epithelial cells of the rat small intestine. II. Selective induction of suppressor T cells. Immunology 1986; 58: 9–14.
  • Mayer L, Shlien R. Evidence for function of Ia molecules on gut epithelial cells in man. J Exp Med 1987; 166: 1471–83.
  • Hershberg RM, Mayer LF. Antigen processing and presen-tation by intestinal epithelial cells - polarity and complex-ity. Immunol Today 2000; 21: 123–8.
  • Panja A, Blumberg RS, Balk SP, Mayer L. CD1d is in-volved in T cell-intestinal epithelial cell interactions. J Exp Med 1993; 178: 1115–9.
  • Bleicher PA, Balk SP, Hagen SJ, Blumberg RS, Flotte TJ, Terhorst C. Expression of murine CD1 on gastrointestinal epithelium. Science 1990; 250: 679–82.
  • Blumberg RS, Terhorst C, Bleicher P, McDermott FV, Allan CH, Landau SB, Trier JS, Balk SP. Expression of a nonpolymorphic MHC class I-like molecule, CD1D, by human intestinal epithelial cells. J Immunol 1991; 147: 2518–24.
  • Burke S, Landau S, Green R, Tseng CC, Nattakom T, Canchis W, Yang L, Kaiserlian D, Gespach C, Balk S, et al. Rat cluster of differentiation 1 molecule: expression on the surface of intestinal epithelial cells and hepatocytes. Gastroenterology 1994; 106: 1143–9.
  • Sieling PA, Chatterjee D, Porcelli SA, Prigozy TI, Mazzac-caro RJ, Soriano T, Bloom BR, Brenner MB, Kronenberg M, Brennan PJ, et al. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 1995; 269: 227–30.
  • Sydora BC, Brossay L, Hagenbaugh A, Kronenberg M, Cheroutre H. TAP-independent selection of CD8± intesti-nal intraepithelial lymphocytes. J Immunol 1996; 156: 4209–16.
  • Guehler SR, Bluestone JA, Barrett TA. Activation and peripheral expansion of murine T-cell receptor KA intraep-ithelial lymphocytes. Gastroenterology 1999; 116: 327–34.
  • Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial KA T cells. Science 1998; 279: 1737–40.
  • Fujihashi K, Taguchi T, Aicher WK, McGhee JR, Blue-stone JA, Eldridge JH, Kiyono H. Immunoregulatory functions for murine intraepithelial lymphocytes: K/A T cell receptor-positive (TCR ±) T cells abrogate oral tolerance, while ///fl TCR ± T cells provide B cell help. J Exp Med 1992; 175: 695–707.
  • Fujihashi K, Dohi T, Kweon MN, McGhee JR, Koga T, Cooper MD, Tonegawa S, Kiyono H. KA T cells regulate mucosally induced tolerance in a dose-dependent fashion. Int Immunol 1999; 11: 1907–16.
  • Saparov A, Kraus LA, Cong Y, Marwill J, Xu XY, Elson CO, Weaver CT. Memory/effector T cells in TCR transgenic mice develop via recognition of enteric antigens by a second, endogenous TCR. Int Immunol 1999; 11: 1253–64.
  • Halstensen TS, Brandtzaeg P. Activated T lymphocytes in the celiac lesion: non-proliferative activation (CD25) of CD4 ±///fi cells in the lamina propria but proliferation (Ki-67) of ///fl and K/A cells in the epithelium. Eur J Immunol 1993; 23: 505–10.
  • Rothberg RM, Farr RS. Anti-bovine serum albumine and anti-alpha lactalbumin in the serum of children and adults. Pediatrics 1965; 35: 571–88.
  • Scott H, Rognum TO, Midtvedt T, Brandtzaeg P. Age-re-lated changes of human serum antibodies to dietary and colonic bacterial antigens measured by an enzyme-linked immunosorbent assay. Acta Pathol Microbiol Immunol Scand [C] 1985; 93: 65–70.
  • Korenblat PE, Rothberg RM, Minden P, Farr RS. Immune responses of human adults after oral and parenteral expo-sure to bovine serum albumin. J Allergy 1968; 41: 226–35.
  • Husby S, Mestecky J, Moldoveanu Z, Holland S, Elson CO. Oral tolerance in humans. T cell but not B cell tolerance after antigen feeding. J Immunol 1994; 152: 4663–70.
  • Waldo FB, Van Den Wall Bake AW, Mestecky J, Husby S. Suppression of the immune response by nasal immunization. Clin Immunol Immunopathol 1994; 72: 30–4.
  • Scott H, Fausa O, Thorsby E. T-lymphocyte activation by a gluten fraction, glyc-gli. Studies of adult coeliac patients and healthy controls. Scand J Immunol 1983; 18: 185–91.
  • Nicklin S, Miller K. Local and systemic immune responses to intestinally presented antigen. Int Arch Allergy Appl Immunol 1983; 72: 87–90.
  • Strobel S, Mowat AM, Drummond HE, Pickering MG, Ferguson A. Immunological responses to fed protein anti-gens in mice. II. Oral tolerance for CMI is due to activation of cyclophosphamide-sensitive cells by gut-processed anti-gen. Immunology 1983; 49: 451–6.
  • Sachdev GK, Dalton HR, Hoang P, Dipaolo MC, Crotty B, Jewell DP. Human colonic intraepithelial lymphocytes sup-press in vitro immunoglobulin synthesis by autologous pe-ripheral blood lymphocytes and lamina propria lymphocytes. Gut 1993; 34: 257–63.
  • Hoyne GF, Callow MG, Kuo M-C, Thomas WR. Presenta-tion of peptides and proteins by intestinal epithelial cells. Immunology 1993; 80: 204–8.
  • Vmey JL, Mowat AM, O'Malley JM, Williamson E, Fanger NA. Expanding dendritic cells in vivo enhances the induction of oral tolerance. J Immunol 1998; 160: 5815–25.
  • Giitgemann I, Fahrer AM, Altman JD, Davis MM, Chien YH. Induction of rapid T cell activation and tolerance by systemic presentation of an orally administered antigen. Immunity 1998; 8: 667–73.
  • Williamson E, Westrich GM, Vmey JL. Modulating den-dritic cells to optimize mucosal immunization protocols. J Immunol 1999; 163: 3668–75.
  • Scott H, Nilsen E, Sollid LM, Lundin KE, Rugtveit J, Molberg O, Thorsby E, Brandtzaeg P. Immunopathology of gluten-sensitive enteropathy. Springer Semin Immunopathol 1997; 18: 535–53.
  • Johansen FE, Pekna M, Norderhaug IN, Haneberg B, Hi-etala MA, Krajci P, Betsholtz C, Brandtzaeg P. Absence of epithelial immunoglobulin A transport, with increased mu-cosal leakiness, in polymeric immunoglobulin receptor/secre-tory component-deficient mice. J Exp Med 1999; 190: 915–22.
  • Sudo N, Sawamura S, Tanaka K, Aiba Y, Kubo C, Koga Y. The requirement of intestinal bacterial flora for the develop-ment of an IgE production system fully susceptible to oral tolerance induction. J Immunol 1997; 159: 1739–45.
  • Gaboriau-Routhiau V, Moreau MC. Gut flora allows recov-ery of oral tolerance to ovalbumin in mice after transient breakdown mediated by cholera toxin or Escherichia coli heat-labile enterotoxin. Pediatr Res 1996; 39: 625–9.
  • Ishizaka S, Kimoto M, Tsujii T, Saito S. Antibody produc-tion system modulated by oral administration of human milk and TGF-fl. Cell Immunol 1994; 159: 77–84.
  • Planchon SM, Martins CAP, Guerrant RL, Roche JK. Regulation of intestinal epithelial barrier function by TGF-fl 1. Evidence for its role in abrogating the effect of a T cell cytokine. J Immunol 1994; 153: 5730–9.
  • Shroff KE, Meslin K, Cebra JJ. Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect Immun 1995; 63: 3904–13.
  • MacDonald TT. Breakdown of tolerance to the intestinal bacterial flora in inflammatory bowel disease. Clin Exp Immunol 1995; 102: 445–7.
  • Blumberg RS, Saubermann LJ, Strober W. Animal models of mucosal inflammation and their relation to human inflam-matory bowel disease. Curr Opin Immunol 1999; 11: 648–56.
  • Madsen KL, Doyle JS, Jewell LD, Tavernini MM, Fedorak RN. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 1999; 116: 1107–14.
  • Hessle C, Hanson LA, Wold AE. Lactobacilli from human gastrointestinal mucosa are strong stimulators of IL-12 pro-duction. Clin Exp Immunol 1999; 116: 276–82.
  • Brandtzaeg P, Haraldsen G, Helgeland L, Nilsen EM, Rugtveidt J. New insights into the immunopathology of human inflammatory bowel disease. Drugs of Today 1999; 35 (Suppl A): 33–70.
  • Logan R. Appendectomy and ulcerative colitis: what con-nection? Gastroenterology 1994; 106: 1382–4.
  • Corry DB, Kheradmand F. Induction and regulation of the IgE response. Nature 1999; 402 (Suppl): B18–23.
  • Holt PG, Macaubas C, Stumbles PA, Sly PD. The role of allergy in the development of asthma. Nature 1999; 402 (Suppl): B12–7.
  • Rook GA, Stanford JL. Give us this day our daily germs. Immunol Today 1998; 19: 113–6.
  • Erb KJ. Atopic disorders: a default pathway in the absence of infection? Immunol Today 1999; 20: 317–22.
  • Björksten B. Allergy priming early in life. Lancet 1999; 353: 167–8.
  • Sepp E, Julge K, Vasar M, Naaber P, Björksten B, Mikel-saar M. Intestinal microflora of Estonian and Swedish in-fants. Acta Paediatr 1997; 86: 956–61.
  • Björksten B, Naaber P, Sepp E, Mikelsaar M. The intestinal microflora in allergic Estonian and Swedish 2-year-old chil-dren. Clin Exp Allergy 1999; 29: 342–6.
  • Dugas B, Mercenier A, Lenoir-Wijnkoop I, Arnaud C, Dugas N, Postaire E. Immunity and probiotics. Immunol Today 1999; 20: 387–90.
  • Isolauri E. Probiotics and gut inflammation. Curr Opin Gastroenterol 1999; 15: 534–7.
  • von Reyn CF, Arbeit RD, Yeaman G, Waddell RD, Marsh BJ, Morin P, et al. Immunization of healthy adult subjects in the United States with inactivated Mycobacterium vaccae administered in a three-dose series. Clin Infect Dis 1997; 24: 843–8.
  • Hopkin JM, Shaldon S, Ferry B, Coull P, Antrobus P, Enomoto T et al. Mycobacterial immunisation in grass pollen asthma and rhinitis. Thorax 1998; 53 (Suppl. 4): A16 (abstract)
  • Beutler B. T1r4: central component of the sole mammalian LPS sensor. Curr Opin Immunol 2000; 12: 20–6.
  • Klinman DM, Yi AK, Beaucage SL, Conover J, Krieg AM. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon IC Proc Natl Acad Sci USA 1996; 93: 2879–83.
  • Baldini M, Lohman IC, Halonen M, Erickson RP, Holt PG, Martinez FD. A polymorphism in the 5' flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am J Respir Cell Mol Biol 1999; 20: 976–83.