764
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Microbial Modulation of Host Intestinal Glycosylation Patterns

Pages 165-178 | Published online: 11 Jul 2009

References

  • Simon GL, Gorbach SL. Intestinal flora in health and disease. Gastroenterology 1984; 86: 174–93.
  • Sharma R, Schumacher U. The influence of diets and gut microflora on lectin binding patterns of intestinal mucins in rats. Lab Invest 1995; 73: 558–64.
  • Gordon HA, Pesti L. The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriol Rev 1971; 35: 390–429.
  • Uribe A, Adam M, Johansson O, Midtvedt T, Theodorsson E. Microflora modulates endocrine cells in the gastrointestinal mucosa of the rat. Gastroenterology 1994; 107: 1259–69.
  • Mack DR, Michail S, Wei S, McDougall L, Hollingsworth MA. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol 1999; 276 (4 Pt 1): G941–50.
  • Mouricout M. Interactions between the enteric pathogen and the host. An assortment of bacterial lectins and a set of glycoconjugate receptors. Adv Exp Med Biol 1997; 412: 109–23.
  • Meynial-Salles I, Combes D. In vitro glycosylation of proteins: an enzymatic approach. J Biotechnol 1996; 46: 1–14.
  • Silberberg A. Mucus glycoprotein, its biophysical and gel-forming properties. Symp Soc Exp Biol 1989; 43: 43–63.
  • Falk P, Roth KA, Gordon JI. Lectins are sensitive tools for defining the differentiation programs of mouse gut epithelial cell lineages. Am J Physiol 1994; 266 (6 Pt 1): G987–1003.
  • Allen A, Hutton DA, Pearson JP. The MUC2 gene product: a human intestinal mucin. Int J Biochem Cell Biol 1998; 30: 797–801.
  • Seregni E, Botti C, Massaron S, Lombardo C, Capobianco A, Bogni A, Bombardieri E. Structure, function and gene expres-sion of epithelial mucins. Tumori 1997; 83 (3): 625–32.
  • Belley A, Keller K, Gottke M, Chadee K, Goettke M. Intestinal mucins in colonization and host defense against pathogens [published erratum appears in Am J Trop Med Hyg 1999 Jun;60(6):1062]. Am J Trop Med Hyg 1999; 60 (4 Suppl): 10–5.
  • Cumming DA. Physiological relevance of protein glycosyla-tion. Dev Biol Stand 1992; 76: 83–94.
  • Ryder SD, Smith JA, Rhodes EG, Parker N, Rhodes JM. Proliferative responses of HT29 and Caco2 human colorectal cancer cells to a panel of lectins. Gastroenterology 1994; 106: 85–93.
  • Phillips TE, Frisch EB. Secretory glycoconjugates of a mucin-synthesizing human colonic adenocarcinoma cell line. Analy-sis using double labeling with lectins. Histochemistry 1990; 93: 311–7.
  • Kodaira H, Ishihara K, Hotta K, Kagoshima M, Shimada H, Ishii K. Rat gastric mucous gel layer contains sialomucin not produced by the stomach. Jpn J Pharmacol 1999; 81: 86–93.
  • Winterford CM, Walsh MD, Leggett BA, Jass JR. Ultrastruc-tural localization of epithelial mucin core proteins in col-orectal tissues. J Histochem Cytochem 1999; 47: 1063–74.
  • Mall AS, McLeod HA, Hickman R, Kahn D, Dent DM. Fragmentation pattern of mucins in normal and diseased gastric mucosae: a glycoprotein fractionates with gastric mucins purified from mucosal scrapings of cancer and peptic ulcer patients. Digestion 1999; 60: 216–26.
  • Capon C, Wieruszeski JM, Lemoine J, Byrd JC, Leffler H, Kim YS. Sulfated lewis X determinants as a major structural motif in glycans from L5174T-11M7 human colon carcinoma mucin. J Biol Chem 1997; 272: 31957–68.
  • Hoskins LC, Agustines M, McKee WB, Boulding ET, Kriaris M, Niedermeyer G. Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J Clin Invest 1985; 75: 944–53.
  • Hoskins LC, Boulding ET. Mucin degradation in human colon ecosystems. Evidence for the existence and role of bacterial subpopulations producing glycosidases as extracellu-lar enzymes. J Clin Invest 1981; 67: 163–72.
  • Carlstedt-Duke B, Hoverstad T, Lingaas E, Norin KE, Saxer-holt H, Steinbakk M, Midtvedt T. Influence of antibiotics on intestinal mucin in healthy subjects. Eur J Clin Microbiol 1986; 5: 634–8.
  • Hultgren SJ, Abraham S, Caparon M, Falk P, St.Geme JW, Nonnark S. Pilus and nonpilus bacterial adhesins: assembly and function in cell recognition. Cell 1993; 73: 887–901.
  • Karlsson KA Meaning and therapeutic potential of microbial recognition of host glycoconjugates. Mol Microbiol 1998; 29: 1–11.
  • Karlsson KA. Animal glycosphingolipids as membrane at-tachment sites for bacteria. Annu Rev Biochem 1989; 58: 309–50.
  • Varki A. Biological roles of oligosaccharides: all of the theo-ries are correct. Glycobiology 1993; 3: 97–130.
  • Brockhausen I. Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta 1999; 1473: 67–95.
  • Bhatia PK, Mukhopadhyay A. Protein glycosylation: implica-tions for in vivo functions and therapeutic applications. Adv Biochem Eng Biotechnol 1999; 64: 155–201.
  • Huttner KM, Bevins CL. Antimicrobial peptides as mediators of epithelial host defense. Pediatr Res 1999; 45: 785–94.
  • Maoret JJ, Font J, Augeron C, Codogno P, Bauvy C, Aubery M, Laboisse CL. A mucus-secreting human colonic cancer cell line. Purification and partial characterization of the secreted mucins. Biochem J 1989; 258: 793–9.
  • Laboisse C, Jarry A, Branka JE, Merlin D, Bou-Hanna C, Vallette G. Regulation of mucin exocytosis from intestinal goblet cells. Biochem Soc Trans 1995; 23: 810–3.
  • von Kleist S, Chany E, Burtin P, King M, Fogh J. Immuno-histology of the antigenic pattern of a continuous cell line from a human colon tumor. J Natl Cancer Inst 1975; 55: 555–60.
  • van Klinken BJ, Oussoren E, Weenink JJ, Strous GJ, Buller HA, Dekker J, Einerhand AW. The human intestinal cell lines Caco-2 and L5174T as models to study cell-type specific mucin expression. Glycoconj J 1996; 13: 757–68.
  • Variyam EP, Hoskins LC. Mucin degradation in human colon ecosystems. Degradation of hog gastric mucin by fecal extracts and fecal cultures. Gastroenterology 1981; 81: 751–8.
  • Ruseler-van Embden JG, van Lieshout LM, Gosselink MJ, Marteau P. Inability of Lactobacillus casei strain GG, L. acidophilus, and Bifidobaaerium bifidum to degrade intestinal mucus glycoproteins. Scand J Gastroenterol 1995; 30: 675–80.
  • Salyers AA, West SE, Vercellotti JR, Wilkins TD. Fermenta-tion of mucins and plant polysaccharides by anaerobic bacte-ria from the human colon. Appl Environ Microbiol 1977; 34: 529–33.
  • Falk PG, Hooper LV, Midtvedt T, Gordon JI. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 1998; 62: 1157–70.
  • Sharma R, Schumacher U, Ronaasen V, Coates M. Rat intestinal mucosal responses to a microbial flora and different diets. Gut 1995; 36: 209–14.
  • Carlstedt-Duke B, Midtvedt T, Nord CE, Gustafsson BE. Isolation and characterization of a mucin-degrading strain of Peptostreptococcus from rat intestinal tract. Acta Pathol Mi-crobiol Immunol Scand [B.] 1986; 94: 293–300.
  • Sherman P, Fleming N, Forstner J, Roomi N, Forstner G. Bacteria and the mucus blanket in experimental small bowel bacterial overgrowth. Am J Pathol 1987; 126: 527–34.
  • Fontaine N, Meslin JC, Lory S, Andrieux C. Intestinal mucin distribution in the germ-free rat and in the heteroxenic rat harbouring a human bacterial flora: effect of inulin in the diet. Br J Nutr 1996; 75: 881–92.
  • Pusztai A, Ewen SW, Grant G, Peumans WJ, Van Damme El, Coates ME, Bardocz S. Lectins and also bacteria modify the glycosylation of gut surface receptors in the rat. Glyco-conj J 1995; 12: 22–35.
  • Umesaki Y, Okada Y, Matsumoto S, Imaoka A, Setoyama H. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol Immunol 1995; 39: 555–62.
  • Salyers AA, Pajeau M. Competitiveness of different polysac-charide utilization mutants of Bacteroides thetaiotaomicron in the intestinal tracts of germfree mice. Appl Environ Microbiol 1989; 55: 2572–8.
  • Bry L, Falk PG, Midtvedt T, Gordon JI. A model of host-mi-crobial interactions in an open mammalian ecosystem. Science 1996; 273: 1380–3.
  • Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci USA 1999; 96: 9833–8.
  • Hooper LV, Bry L, Falk PG, Gordon JI. Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. Bioessays 1998; 20: 336–43.
  • Dai D, Walker WA. Role of bacterial colonization in neona-tal necrotizing enterocolitis and its prevention. Chung Hua Min Kuo Hsiao Erh Ko I Hsueh Hui Tsa Chih 1998; 39: 357–65.
  • Krivan HC, Clark GF, Smith DF, Wilkins TD. Cell surface binding site for Clostridium difficile enterotoxin: evidence for a glycoconjugate containing the sequence Gal alpha 1-3 Gal beta 1-4G1cNAc. Infect Immun 1986; 53: 573–81.
  • Mouricout MA, Julien RA. Pilus-mediated binding of bovine enterotoxigenicEscherichia coli to calf small intestinal mucins. Infect Immun 1987; 55: 1216–23.
  • Chadee K, Johnson ML, Orozco E, Petri WAJ, Ravdin JI. Binding and internalization of rat colonic mucins by the galactose/N-acetyl-D-galactosamine adherence lectin of Enta-moeba histolytica. J Infect Dis 1988; 158: 398–406.
  • Shaniztki B, Hurwitz D, Smorodinsky N, Ganeshkumar N, Weiss El. Identification of a Fusobaaeriumnucleatum PK1594 galactose-binding adhesin which mediates coaggregation with periopathogenic bacteria and hemagglutination. Infect Immun 1997; 65: 5231–7.
  • Guruge JL, Falk PG, Lorenz RG, Dans M, Wirth HP, Blaser MJ, Berg DE, Gordon JI. Epithelial attachment alters the outcome of Helicobacter pylori infection. Proc Natl Acad Sci USA 1998; 95: 3925–30.
  • Greene JD, Klaenhammer TR. Factors involved in adherence of lactobacilli to human Caco-2 cells. Appl Environ Microbiol 1994; 60: 4487–94.
  • Yamamoto K, Miwa T, Taniguchi H, Nagano T, Shimamura K, Tanaka T, Kumagai H. Binding specificity of Lactobacillus to glycolipids. Biochem Biophys Res Commun 1996; 228: 148–52.
  • Conway PL, Kjelleberg S. Protein-mediated adhesion of Lac-tobacillus fennentum strain 737 to mouse stomach squamous epithelium. J Gen Microbiol 1989; 135 (Pt 5): 1175–86.
  • Adlerberth I, Ahme S, Johansson ML, Molin G, Hanson LA, Wold AE. A mannose-specific adherence mechanism in Lac-tobacillus plantarum conferring binding to the human colonic cell line HT-29. Appl Environ Microbiol 1996; 62: 2244–51.
  • Mukai T, Kaneko S, Ohori H. Haemagglutination and glycol-ipid-binding activities of Lactobacillus reuteri. Lett Appl Mi-crobiol 1998; 27: 130–4.
  • Maganti S, Pierce MM, Hoffmaster A, Rodgers FG. The role of sialic acid in opsonin-dependent and opsonin-independent adhesion of Listeria mono cytogenes to murine peritoneal macrophages. Infect Immun 1998; 66: 620–6.
  • Cowart RE, Lashmet J, McIntosh ME, Adams TJ. Adherence of a virulent strain of Listeria monocytogenes to the surface of a hepatocarcinoma cell line via lectin-substrate interaction. Arch Microbiol 1990; 153: 282–6.
  • Pulverer G, Ko HL, Tunggal L, Beuth J, Jeljaszewicz J. Combined immunomodulation (Propionibacterium avidum KP-40) and lectin blocking (D-galactose) prevents liver tumor colonization in BALB/c-mice. Zentralbl Bakteriol 1994; 281: 491–4.
  • Gilboa-Garber N, Sudakevitz D, Sheffi M, Sela R, Levene C. PA-I and PA-II lectin interactions with the ABO(H) and P blood group glycosphingolipid antigens may contribute to the broad spectrum adherence of Pseudomonas aeruginosa to hu-man tissues in secondary infections. Glycoconj J 1994; 11: 414–7.
  • Lee MD, Curtiss R, Peay T. The effect of bacterial surface structures on the pathogenesis of Salmonella typhimurium infection in chickens. Avian Dis 1996; 40: 28–36.
  • Kumar KS, Ganguly NK, Anand IS, Wahi PL. Lectin medi-ated binding of Streptococcus pyogenes to human oropharyn-geal mucosal epithelial cells. Indian J Exp Biol 1996; 34: 270–1.
  • Gardel CL, Mekalanos JJ. Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression. Infect Immun 1996; 64: 2246–55.
  • Bemet-Camard MF, Coconnier MH, Hudault S, Servin AL. Differentiation-associated antimicrobial functions in human colon adenocarcinoma cell lines. Exp Cell Res 1996; 226: 80–9.
  • Coconnier MH, Lievin V, Bernet-Camard MF, Hudault S, Servin AL. Antibacterial effect of the adhering human Lacto-bacillus acidophilus strain LB. Antimicrob Agents Chemother 1997; 41: 1046–52.
  • Zweibaum A. [Differentiation of human colon cancer cells: a new approach to cancer of the colon]. Ann Gastroenterol Hepatol (Paris) 1993; 29: 257–61.
  • Lesuffieur T, Porchet N, Aubert JP, Swallow D, Gum JR, Kim YS, Real FX, Zweibaum A. Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations. J Cell Sci 1993; 106 (Pt 3): 771–83.
  • Bernet MF, Brassart D, Neeser JR, Servin AL. Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interac-tions. Appl Environ Microbiol 1993; 59: 4121–8.
  • Bou-Hanna C, Berthon B, Combettes L, Claret M, Laboisse CL. Role of calcium in carbachol- and neurotensin-induced mucin exocytosis in a human colonic goblet cell line and cross-talk with the cyclic AMP pathway. Biochem J 1994; 299 (Pt 2): 579–85.
  • Merlin D, Guo X, Laboisse CL, Hopfer U. Ca2 + and cAMP activate different K + conductances in the human intestinal goblet cell line HT29-C1.16E. Am J Physiol 1995; 268 (6 Pt 1): C1503–11.
  • Keller K, Olivier M, Chadee K. The fast release of mucin secretion from human colonic cells induced by Entamoeba histolytica is dependent on contact and protein kinase C activation. Arch Med Res 1992; 23: 217–21.
  • Szentkuti L, Riedesel H, Enss ML, Gaertner K, Von Engel-hardt W. Pre-epithelial mucus layer in the colon of conven-tional and germ-free rats. Histochem J 1990; 22: 491–7.
  • Enss ML, Grosse-Siestrup H, Schmidt-Wittig U, Gartner K. Changes in colonic mucins of germfree rats in response to the introduction of a 'normal' rat microbial flora. Rat colonic mucin. J Exp Anim Sci 1992; 35: 110–9.
  • Enss ML, Muller H, Schmidt-Wittig U, Kownatzki R, Co-enen M, Hedrich HJ. Effects of perorally applied endotoxin on colonic mucins of germfree rats. Scand J Gastroenterol 1996; 31: 868–74.
  • Kandori H, Hirayama K, Takeda M, Doi K. Histochemical, lectin-histochemical and morphometrical characteristics of in-testinal goblet cells of germfree and conventional mice. Exp Anim 1996; 45: 155–60.
  • Meslin JC, Fontaine N, Andrieux C. Variation of mucin distribution in the rat intestine, caecum and colon: effect of the bacterial flora. Comp Biochem Physiol A Mol Integr Physiol 1999; 123: 235–9.
  • Romond MB, Hamze M, Romond C, Bourlioux P. [Host-afidobacterium interactions in the axenic mouse: partial char-acterization of bifidogenic factors in the intestinal contents]. Can J Microbiol 1990; 36: 286–91.
  • Fontaine N, Meslin JC, Dore J. Selective in vitro degradation of the sialylatekl fraction of germ-free rat mucins by the caecal flora of the rat. Reprod Nutr Dev 1998; 38: 289–96.
  • Corfield AP, Wagner SA, Clamp JR, Kriaris MS, Hoskins LC. Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect Immun 1992; 60: 3971–8.