133
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Interactions of Bacteria with the Host Alteration of Microflora-Associated Characteristics of the Host; Non-Immune Functions

Pages 186-193 | Published online: 11 Jul 2009

References

  • Katouli M, Norin E. New approaches in analysis of intestinal microflora. Recent Research. Dev Microbiol 1998; 2: 151–64.
  • Reddy BS, Hedges AR, Laakso K, et al. Metabolic epidemiol-ogy of large bowel cancer—Fecal bulk and constitutents of high-risk North American and low-risk Finnish population. Cancer 1978; 42: 2832–8.
  • Johansson G, Midtvedt T, Gustafsson J-A. The effect of a shift from a mixed to a lacto-vegetarian diet on some microflora related variables in faeces—with special emphasis on the relation to cancer risk. Acta Chirurgica Scand Supp11991; 562: 51–5.
  • Rowland IR. Intestinal cancer—enzymatic aspects. Acta Chirurgica Scand Suppl 1991; 562: 225–55.
  • Midtvedt T, Bjorneklett A, Carlstedt-Duke B, et al. The influence of antibiotics upon microflora-associated characteris-tics in man and animals. In: Wostmann BS, Pleasants JR, Pollard M, et al., eds. Germfree research; Microflora control and its application to the biomedical sciences. New York: Alan R Liss Inc, 1985: 241–4.
  • Falk GP, Hooper LV, Midtvedt T, Gordon JI. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 1998; 62: 1157–70.
  • Aksnes J, Rollag H, Aaberg T, et al. An experiment model for the study of long-term parenteral nutrition in pig. Morbidity, microbial and biochemical findings. Scand J Lab Animal Sci 1994; 2: 41–51.
  • Midtvedt T. In vivo models for short chain fatty acid produc-tion. Short chain fatty acids. In: Binder HJ, Cummings J, Soergel K, eds. Falk Symposium 73. Klower: Academic Pub-lishers, 1994: 61–8.
  • Siigur U, Norin KE, Allgood G, et al. Effects of olestra on faecal water and short-chain fatty acids. Microb Ecol Health Dis 1996; 9: 9–17.
  • Siigur U, Norin KE, Allgood G, et al. Effect of olestra upon intestinal microecology as reflected by five microflora associ-ated characteristics in man. Microb Ecol Health Dis 1996; 9: 297–303.
  • Norin KE. Five microflora associated characteristics in con-ventional rats. Microb Ecol Health Dis 1996; 9: 129–33.
  • CoHinder E, Lindholm A, Midtvedt T, Norin E. Six intestinal microflora-associated characteristics in sport horses. Equine Vet J 2000; 32 (3): 222–7.
  • Falk P. Helicobacter pylori-can the mechanisms of patho-genesis guide us towards novel strategies for treatment and prevention. J Int Med 1996; 240: 319–32.
  • Cover TL, Blaser MJ. Helicobacter pylori infection, a paradigm for chronic mucosal inflammation: pathogenesis and implications for eradication and prevention. Adv Int Med 1996; 42: 85–117.
  • Gordon HA, Bruckner-Kardoss E. Effect of normal microbial flora on intestinal surface area. An J Physiol 1961; 201: 175–8.
  • Meslin JC, Sacuet E, Guenet J-L. Action de la fore bactéri-enne sur la morphologie et la surface muqueuse de l'intestin grele du rat. Annu Biol Animal Biochem Biophys 1973; 13: 203–14.
  • Meslin JC, Sacuet E, Raibaud P. Action d'une fore microbi-enne qui ne déconjugue pas les sels biliares sur la morphologie at le renouvellement cellulaire de la muqueuse de l'intestin grele du rat. Annu Biol Animal Biochem Biophys 1974; 14: 709–20.
  • Abrams GD. Effects of the normal flora on host defenses against microbial invasion. Adv Exp Med Biol 1969; 3: 197–206.
  • Crabbe PA, Nash DR, Bazin H, Eyssen H, Heremans JF. Immunohistochemical observations on lymphoid tissues from conventional and germfree mice. Lab Invest 1970; 22: 448–57.
  • Nuttal GHF, Thierfelder H. Thirtisches Leben ohne Bakte-rien im Verdauungskanal. Hoppe Seyler's Zeitschrift fur Phys-iologische Chemie 1896–97; 33: 62–73.
  • Wostmann BS, Bruckner-Kardoss E. Development of caecal distension in germfree baby rats. Am J Physiol 1959; 197: 1345–6.
  • Pleasants JR. Characteristics of the germfree animal. In: Coates M, ed. The Germfree Animal in Research. New York: Academic Press, 1968: 113–25.
  • Gustafsson BE, Maunsbach AB. Ultrastructure of the en-larged caecum in germfree rats. Zeitschrift fur Zell forschung 1971; 120: 555–78.
  • Heneghan JB. Enterocyte kinetics, mucosal surface area and mucus in gnotobiotes. Zentralblatt fur Bakteriologie, Para-sitenkunde, Infektionskrankheiten und Hygiene Supplement 1979; 7: 19–27.
  • Strandberg K, Sedvall G, Midtvedt T, Gustafsson BE. Effect of some biologically active amines on the caecum wall of germfree rats. Proc Soc Exp Biol Med 1966; 121: 699–702.
  • Gustafsson BE, Midtvedt T, Strandberg K. Effects of micro-bial contamination on the caecum enlargement of germfree rats. Scand J Gastroenterol 1970; 5: 309–14.
  • Husebye E, Hellström PM, Midtvedt T. Introduction of conventional microbial flora to germfree rats increases the frequency of migrating myoelectric complexes. J Gastrointes-tinal Motility 1992; 4: 39–45.
  • Husebye E, Hellström PM, Midtvedt T. Intestinal micro-flora stimulates myoelectric activity of rat wall intestine by promot-ing cyclic initiation and abnormal propagation of migrating myoelectric complexes. Digestion Diseases Sci 1992; 39: 946–56.
  • Uribe A, Alam M, Johansson O, et al. Microflora modulates endocrine cells in the gastrointestinal mucosa of the rat. Gastroenterology 1994; 107: 1259–69.
  • Midtvedt T. Microbial functional activities. In: Hansson L-A, Yolken RH, eds. Probiotics, other nutritional factors and intestinal microflora. Nestle Nutrition Workshop Series. Philadelphia: Vevey/Lippincott-Raven Publishers, 1999: 79–96.
  • Uribe A, Adam M, Midtvedt T. E2-prostaglandins modulate cell proliferation in the small intestinal epithelium of the rat. Digestion 1992; 52: 157–64.
  • Gordon HA, Bruckner G. Anomalous lower bowel function and related phenomena in germ-free animals. In: Coates ME, Gustafsson BE, eds. The germfree animal in biomedical re-search. London: Laboratory Animals Ltd, 1984: 193–213.
  • Gustafsson BE. The physiological importance of the colonic flora. Scand J Gastroenterol 1982; 77: 117–31.
  • Midtvedt T. The normal microflora, intestinal motility and influence of antibiotics. An overview. In: Grubb R, Midtvedt T, Norin KE, eds. The regulatory and protective role of the microflora. London: MacMillan Press, 1989: 147–67.
  • Rod TO, Midtvedt T. The origin of intestinal 13-glucuronidase in germfree, monocontaminated and conventional rats. Acta Pathol Microbiol Scand Sect B 1977; 85: 271–6.
  • Gadelle D, Raibaud P, Sacquet E. 13-glucuronidase activities of intestinal bacteria determined both in vitro and in vivo in gnotobiotic rats. Appl Environ Microbiol 1985; 49: 682–5.
  • Gustafsson BE, Swenander-Lanke L. Bilirubin and urobilins in germfree, ex-germfree and conventional rats. J Exp Med 1960; 112: 975–81.
  • Midtvedt T, Gustafsson BE. Microbial conversion of bilirubin to urobilins in vitro and in vivo. Acta Pathol Microbiol Scand Sect B 1981; 89: 57–60.
  • Midtvedt A-C, Carlstedt-Duke B, Norin KE, et al. Develop-ment of five metabolic activities associated with the intestinal microflora of healthy infants. J Padiatric Gastroenterol Nutr 1988; 7: 559–67.
  • Saxerholt H, Carlstedt-Duke B, Hoverstad T, et al. Influence of antibiotics on the faecal excretion of bile pigments in healthy subjects. J Gastroenterol 1986; 2: 991–6.
  • Freier TA, Beitz DC, Li L, Hartman PA. Characterisation of Eubacterium coprostanoligenes nov sp, a cholesterol-reducing anaerobe. Int J Systematic Bacteriol 1994; 44: 137–42.
  • Danielsson H, Gustafsson BE. On serum-cholesterol levels and neutral faecal sterols in germfree rats. Bile acids and steroids 59. Arch Biochem Biophys 1959; 83: 482–5.
  • Li L, Buhman KK, Hartman PA, Beitz DC. Hypocholes-terolemic effects of Eubacterium cop rostanoligenes ATCC 51222 in rabbits. Lett Appl Microbiol 1995; 20: 137–40.
  • Carlstedt-Duke B, Hoverstad T, Lingaas E, et al. Influence of antibiotics on intestinal mucin in healthy subjects. Eur J Clin Microbiol 1986; 5: 634–8.
  • Hoskins LC, Agustines M, McKee WB, et al. Mucin degrada-tion in human colon ecosystems: isolation and properties of faecal strains that degrade ABH blood group antigens and oligosacharides from mucin glycoproteins. J Clin Investiga-tions 1985; 75: 944–53.
  • Karlsson K-A. Animal glucosphingolipids as membrane at-tachment sites for bacteria. Annu Rev Biochem 1989; 58: 309–50.
  • Carlstedt-Duke B, Midtvedt T, Nord CE, Gustafsson BE. Isolation and characterisation of a mucin degrading strain of peptostreptococcus from rat intestinal tract. Acta Pathol Mi-crobiol Immunol Scand Sect B 1986; 94: 292–300.
  • Midtvedt A-C, Carlstedt-Duke B, Midtvedt T, et al. The establishment of mucin degrading intestinal microflora during the two first years of human life. J Padiatric Gastroenterol Nutr 1994; 18: 321–6.
  • Bezirtzoglou E, Norin KE, et al. Influence of roxitromycin on mucin degradation in rats. Microecol Therapy 1995; 25: 168–72.
  • Carlstedt-Duke B, Alm L, Hoverstad T, et al. Influence of clindamycin, administered together with or without lacto-bacilli, upon intestinal ecology in rats. FEMS Microbiol Ecol 1987; 45: 251–9.
  • Norin KE. The normal microflora and intestinal enzymes. In: Grubb R, Midtvedt T, Norin KE, eds. The regulatory and protective role of the normal microflora. New York: Stockton Press, 1988: 219–37.
  • Norin KE, Carlstedt-Duke B, Hoverstad T, et al. Faecal tryptic activity in humans; influence of antibiotics on micro-bial intestinal degradation. Microb Ecol Health Dis 1988; 1: 65–8.
  • Norin KE, Gustafsson BE, Midtvedt T. Strain differences in faecal tryptic activity of germfree and conventional rats. Lab Animals 1986; 20: 67–9.
  • Ramare F, Hautefort I, Verhe F, et al. Inactivation of tryptic activity by a human-derived strain of Bacteroides distasonis in the large intestines of gnotobiotic rats and mice. Appl Envi-ron Microbiol 1996; 62: 1434–6.
  • Bergstrand LO, Gustafsson BE, Holmström B, Norin KE. The physiological activity of human ileal flora in patients with Crohn's disease and ulcerative colitis evaluated by determina-tion of germfree animal characteristics. Acta Chirurgica Scand 1981; 147: 707–9.
  • Welling GW, Groen G, Tuinte HM, et al. Biochemical effects on germ-free mice of association with several strains of anaer-obic bacteria. J Gen Microbiol 1980; 117: 57–63.
  • Welling GW, Helmus G, de Vries-Hospers HG, et al. Ratio-nale for use of 13-aspartylglycine as indicator of colonization resistance. In: Wostmann BS, et al., eds. Germfree research, microflora control and its application to the biochemical sciences. New York: Alan L Liss , 1985: 155.
  • van der Waaij D, van der Waaij BD. The colonization resistance of the digestive tract in different animal species and in man: a comparative study. Epidemiol Infections 1990; 105: 237–43.
  • Leng RA. Fermentation and production of volatile fatty acids in the rumen. In: PhiEpson AT, ed. Physiology of digestion and metabolism in the ruminant. Newcastle upon Tyne, UK: Oriel, 1970: 407–21.
  • Hoverstad T, Midtvedt T. Short-chain fatty acids in germ-free mice and rats. J Nutr 1986; 116: 1772–6.
  • Hoverstad T, Carlstedt-Duke B, Lingaas E, et al. Influence of ampicillin, clindamycin, and metronidazole on faecal excre-tion of short-chain fatty acids in healthy subjects. Scand J Gastroenterol 1986; 21: 621–6.
  • Hoverstad T, Carlstedt-Duke B, Lingaas E, et al. Influence of oral intake of seven different antibiotics on faecal of short-chain fatty acid excretion in healthy subjects. Scand J Gas-troenterol 1986; 21: 997–1003.
  • Kautiainen A, Midtvedt T, Tömqvist M. Intestinal bacteria and endogenous production of malonaldehyde and alkylators in mice. Carcinogenesis 1993; 14: 2633–6.
  • Midtvedt T. Germfree animals and carcinogenesis. Biosci Microflora 1997; 16: 49–54.
  • Möller L, Zeisig M, Midtvedt T. Intestinal microflora en-hances formation of DNA adducts following administration of 2-NF and 2-Aaf. Carcinogenesis 1981; 15: 857–61.
  • Fuller R. Probiotics in man and animal. J Appl Microbiol 1989; 66: 365–78.
  • Norin KE. Influence of antibiotics on some intestinal mi-croflora associated characteristics. Anaerobe 1997; 3: 145–8.