101
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enteric Toxins from Bacteria Colonizing Human Gut

Pages 194-208 | Published online: 11 Jul 2009

References

  • Aktories K. Rho proteins: targets for bacterial toxins. Trends Microbiol 1997; 5: 282–8.
  • Boquet P, Munro P, Fiorentini C, Just I. Toxins from anaerobic bacteria: specificity and molecular mechanisms of action. Curr Opin Microbiol 1998; 1: 66–74.
  • Donelli G, Fiorentini C. Cell injury and death caused by bacterial protein toxins. Toxicol Lett 1992; 64/65: 695–9.
  • Donelli G, Fiorentini C. Bacterial protein toxins acting on the cell cytoskeleton. Microbiologica 1994; 17: 345–62.
  • Fiorentini C, Gauthier M, Donelli G, Boquet P. Bacterial toxins and the rho GTP-binding protein: what microbes teach us about cell regulation. Cell Death Diff 1998; 5: 720–8.
  • Malorni W, Donelli G. Cell death: general features and morphological aspects. Ann NY Acad Sci 1992; 663:218–33.
  • Hall A. Rho GTPases and the actin cytoskeleton. Science 1998; 279: 509–14.
  • Narumiya S. The small GTPase Rho: cellular functions and signal transduction. J Biochem (Tokyo) 1996; 120: 215–28.
  • Ridley Al Rho: theme and variations. Curr Biol 1996; 6: 1256–64.
  • Tapon N, Hall A. Rho, Rac and CDC42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 1997; 9: 86–92.
  • Van Aelst L, D'Souza-Schorey C. Rho GTPases and sig-nalling networks. Genes Dev 1997; 11: 2295–322.
  • Berg RD. The indigenous gastrointestinal microflora. Trends Microbiol 1996; 4: 430–5.
  • Polk BF, Kasper DL. Bacteroides fragilis subspecies in clini-cal isolates. Ann Intern Med 1977; 86: 569–71.
  • Myers LL, Firehammer BD, Shoop DS, Border MM. Bac-teroides fragilis: a possible cause of acute diarrhoeal disease in newborn lambs. Infect Immun 1984; 44: 241–4.
  • Myers LL, Shoop DS, Firehammer BD, Border MM. Asso-ciation of enterotoxigenic Bacteroides fragilis with diarrhoeal disease in calves. J Infect Dis 1985; 152: 1344–7.
  • Obiso RJ Jr, Lyerly DM, Van Tassell RL, Wilkins TD. Proteolytic activity of the Bacteroides fragilis enterotoxin causes fluid secretion and intestinal damage in vivo. Infect Immun 1995; 63: 3820–6.
  • Myers LL, Shoop DS, Stackhouse LL, et al. Isolation of enterotoxigenic Bacteroides fragilis from humans with di-arrhoea. J Clin Microbiol 1987; 25: 2330–3.
  • Van Tassell RL, Lyerly DM, Wilkins TD. Purification and characterization of an enterotoxin from Bacteroides fragilis. Infect Immun 1992; 60: 1343–50.
  • Moncrief JS, Obiso R Jr, Barroso LA, Kling JJ, Wright RL, Van Tassel RL, Lyerly DM, Wilkins TD. The enterotoxin of Bacteroides fragilis is a metalloprotease. Infect Immun 1986; 63: 175–81.
  • Franco AA, Mundy LM, Trucksis M, Wu S, Kaper JB, Sears CL. Cloning and characterization of the Bacteroides fragilis metalloprotease toxin gene. Infect Immun 1997; 65: 1007–13.
  • Kling JJ, Wright RL, Moncrief JS, Wilkins TD. Cloning and characterization of the gene for the metalloprotease entero-toxin of Bacteroides fragilis. FEMS Microbiol Lett 1997; 146: 279–84.
  • Sears CL, Myers LL, Lazenby A, Van Tassell RL. Entero-toxigenic Bacteroides fragilis. Clin Infect Dis 1995; 20 (suppl 2): S142–8.
  • Weikel CS, Grieco FD, Reuben J, Myers LL, Sack RB. Human colonic epithelial cells, HT29/C1, treated with crude Bacteroides fragilis enterotoxin dramatically alter their mor-phology. Infect Immun 1992; 60: 321–7.
  • Pantosti A, Cerquetti M, Colangeli R, D'Ambrosio F. De-tection of intestinal and extra-intestinal strains of enterotox-igenic Bacteroides fragilis by the HT-29 cytotoxicity assay. J Med Microbiol 1994; 41: 191–6.
  • Koshy SS, Montrose MH, Sears CL. Human intestinal epithelial cells swell and demonstrate actin rearrangement in response to the metalloprotease toxin of Bacteroides fragilis. Infect Immun 1996; 64: 5022–8.
  • Saidi RF, Sears CL. Bacteroides fragilis toxin rapidly intoxi-cates human intestinal epithelial cells (HT29/C1) in vitro. Infect Immun 1996; 64: 5029–34.
  • Donelli G, Fabbri A, Fiorentini C. Bacteroides fragilis en-terotoxin induces cytoskeletal changes and surface blebbing in HT-29 cells. Infect Immun 1996; 64: 113–9.
  • Chambers FG, Koshy SS, Saidi RF, Clark DP, Moore RI), Sears CL. Bacteroides fragilis toxin exhibits polar activity on monolayers of human intestinal epithelial cells (1784 cells) in vitro. Infect Immun 1997; 65: 3561–70.
  • Obiso RJ Jr, Azghani AO, Wilkins TD. The Bacteroides fragilis toxin fragilysin disrupts the paracellular barrier of epithelial cells. Infect Immun 1997; 65: 1431–9.
  • Wu S, Lim KC, Huang J, Saidi RF, Sears CL. Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc Natl Acad Sci 1998; 95: 14979–84.
  • Bartlett JC. Clostridium difficile: history of its role as an enteric pathogen and the current state of knowledge about the organism. Clin Infect Dis 1994; 18 (supp1.4): S265–72.
  • Bartlett J, Chang TW, Gurwith M, Gorbach SL, Onderdonk AB. Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. N Engl J Med 1978; 298: 531–4.
  • Bothell° SP. Clostridium difficile and its toxin in the gas-trointestinal tract in health and disease. Res Clin Forums 1979; 1: 33–5.
  • Fekety R. Guidelines for the diagnosis and management of Clostridium difficile-associated diarrhoea and colitis. Am J Gastroenterol 1997; 92: 739–50.
  • George RH, Symonds JM, Dimock F, et al. Identification of Clostridium difficile as a cause of pseudomembranous colitis. Br Med J 1978; 1: 695.
  • Gorbach SL, Bartlett JG. Anaerobic infections. N Engl J Med 1974; 290: 1177–84.
  • Kelly CP, Pothoulakis C, LaMont JT. Clostridium difficile colitis. N Engl J Med 1994; 330: 257–62.
  • Larson HE, Price AB, Honour P, Bothell° SP. Clostridium difficile and the aetiology of pseudomembranous colitis. Lancet 1978; 1: 1063–6.
  • Lyerly DM, Barroso LA, Wilkins TD, Depitre C, Corthier G. Characterization of a toxin A-negative, toxin B-positive strain of Clostridium difficile. Infect Immun 1992; 60: 4633–9.
  • Lyerly DM, Wilkins TD. Clostridium difficile. In: Blaser MJ, Smith PD, Ravdin JI, Greenberg HB, Guerrant EL, eds. Infections of the gastrointestinal tract. New York: Raven Press, 1995: 867–91.
  • Bothell° SP, Davies HA, Kamiya S, Reed PJ. Virulence factors of Clostridium difficile. Rev Infect Dis 1990; 12 (Suppl. 2): 185–91.
  • Bothell° SP, Wren BW, Hyde S, et al. Molecular, immuno-logical, and biological characterization of the toxin A-nega-tive, toxin B-positive strain of Clostridium difficile. Infect Immun 1992; 60: 4192–9.
  • Karjalainen T, Poilane I, Collignon A, et al. Clostridium difficile virulence: correlation between toxigenicity, enzyme production and serogroup. Microecol Ther 1995; 25: 157–63.
  • Kato N, Ou CY, Kato H, et al. Identification of toxigenic Clostridium difficile by the Polymerase Chain Reaction. J Clin Microbiol 1991; 29: 33–7.
  • Lyerly DM, Saum KE, MacDonald DK, Wilkins TD. Ef-fects of Clostridium difficile toxins given intragastrically to animals. Infect Immun 1985; 47: 349–52.
  • Mastrantonio P, Pantosti A, Cerquetti M, Fiorentini C, Donelli G. Clostridium difficile: an update on virulence mechanisms. Anaerobe 1996; 2: 337–43.
  • Miller PD, Pothoulakis C, Baeker TR, LaMont if, Roth-stein TL. Macrophage-dependant stimulation of T cell-de-pleted spleen cells by Clostridium difficile toxin A and calcium ionophore. Cell Immunol 1990; 126: 155–63.
  • Moore H, Pothoulakis C, LaMont if, Carlson S, Madara JL. C. difficile toxin A increases intestinal permeability and induces Cl-secretion. Am. J. Physiol. 259: G165–72.
  • Seddon SV, Hemingway I, Bothell° SP. Hydrolitic enzyme production by Clostridium difficile and its relationship to toxin production and virulence in the hamster model. J Med Microbiol 1990; 31: 169–74.
  • Torres JF. Purification and characterization of toxin B from a strain of Clostridium difficile that does not produce toxin A. J Med Microbiol 1991; 35: 40–4.
  • Torres JF, Jennische E, Lange S, Lonroth I. Enterotoxins from Clostridium difficile: diarrhoeogenic potency and mor-phological effects in the rat intestine. Gut 1990; 31: 781–5.
  • Banno Y, Kobayashi T, Kono H, Watanabe K, Ueno K, Nozawa Y. Biochemical characteristics and biologic action of two toxins (D-1 and D-2) from Clostridium difficile. Rev Infect Dis 1984; 6: S11–20.
  • Lima AA, Lyerly DM, Wilkins TD. Purification and charac-terization of toxins A and B of Clostridium difficile. Infect Immun 1988; 56: 582–8.
  • Sullivan NM, Pellet S, Wilkins TD. Purification and charac-terization of toxins A and B of Clostridium difficile. Infect Immun 1982; 35: 1032–40.
  • Taylor NS, Thorne GM, Bartlett JG. Comparison of two toxins produced by Clostridium difficile. Infect Immun 1981; 34: 1036–43.
  • Donelli G, Fiorentini C, Mastrantonio P, Thelestam M. Cytotoxicity of Clostridium difficile toxin A on a rat intestinal cell line. In: Gopalakrishnakone P, Tan CK, eds. Recent Advances in Toxin°logy Research. National University of Singapore, 1992; 3: 401–6.
  • Fiorentini C, Paradisi S, Malomi W, et al. Cytoskeletal changes in cultured cells induced by toxin A from Clostridium difficile. Microecol Ther 1989; 18: 213–6.
  • Fiorentini C, Thelestam M. Clostridium difficile toxin A and its effects on cells. Toxicon 1991; 29: 543–67.
  • Malomi W, Paradisi S, Dupuis ML, Fiorentini C, Ramoni C. Enhancement of cell-mediated cytotoxicity by Clostridium difficile toxin A: an in vitro study. Toxicon 1991; 29: 417–28.
  • Pothoulakis C, Galili U, Castagliuolo I. A human antibody binds to a-galactose receptors and mimics the effects of Clostridium difficile toxin A in rat colon. Gastroenterology 1996; 110: 1704–12.
  • Pothoulakis C, Gilbert RJ, Cladaras C. Rabbit sucrase-iso-maltase contains a functional intestinal receptor for Clostrid-ium difficile toxin A. J Clin Invest 1996; 98: 641–9.
  • Pothoulakis C, LaMont if, Eglow R. Characterizing of rabbit Heal receptors for Clostridiwn difficile toxin A. J Clin Invest 1991; 88: 119–25.
  • Gilbert RJ, Pothoulakis C, LaMont JT, Yakubovich M. Clostridium difficile toxin B activates calcium influx required for actin disassembly during cytotoxicity. Am J Physio11995; 268: G487–95.
  • Hecht G, Koutsouris A, Pothoulakis C, LaMont JT, Madara JL. Clostridium difficile toxin B disrupts the barrier function of T84 monolayers. Gastroenterology 1992; 102: 416–23.
  • Barroso LA, Wang SZ, Phelps CJ, Hohnson JL, Wilkins TD. Nucleotide sequence of Clostridium difficile toxin B gene. Nucleic Acids Res 1990; 18: 4004.
  • Dove CH, Wang SZ, Price SB, et al. Molecular characteriza-tion of the Clostridium difficile toxin A gene. Infect Immun 1990; 58: 480–8.
  • Fluit ADC, Wolfhagen MJHM, Verdonk GPHT, Jansze M, Torensema R, Verhoef J. Nontoxigenic strains of Clostridium difficile lack the genes for both toxin A and toxin B. J Clin Microbiol 1991; 29: 2666–7.
  • Sauberbom M, von Eichel-Streiber C. Nucleotide sequence of Clostridium difficile toxin A. Nucleic Acids Res 1990; 18: 1629–30.
  • Von Eichel-Streiber C, Laufenberg-Feldmann R, Sartingen S, Schulze J, Sauerbom M. Comparative sequence analysis of the Clostridium difficile toxins A and B. Mol Gen Genet 1992; 233: 260–8.
  • Krivan HC, Clark GF, Smith DF, Wilkins TD. Cell surface binding site for Clostridium difficile enterotoxin: evidence for a glycoconjugate containing the sequence Gal-1-3Gal-1-4G1cNAc. Infect Immun 1986; 53: 573–81.
  • Rolfe RD, Song W. Purification of a functional receptor for Clostridium difficile toxin A from intestinal brush border membranes of infant hamsters. Clin Infect Dis 1993; 16 (Suppl. 4): S219–27.
  • Tucker KD, Wilkins TD. Toxin A of Clostridium difficile binds to the human carbohydrate antigens I, X, and Y. Infect Immun 1991; 59: 73–8.
  • Lyerly DM, Barroso LA, Moncrief S, Wilkins TD. Molecular biology of toxins A and B of Clostridium difficile. Microb Ecol Health Dis 1995; 8: 186–7.
  • Mitchell TJ, Ketley JM, Haslam SC, et al. Effect of toxin A and toxin B of Clostridium difficile on rabbit ileum and colon. Gut 1986; 27: 78–85.
  • Triadafilopoulos G, Pothoulakis C, O'Brien MJ, LaMont JT. Differential effect of Clostridium difficile toxin A and B on rabbit ileum. Gastroenterology 1987; 93: 273–9.
  • Riegler M, Sedivy R, Pothoulakis C, et al. Clostridium difficile toxin B is more potent than toxin A in damaging human colonic epithelium in vitro. J Clin Invest 1995; 95: 2004–11.
  • Guandalini S, Fasano A, Mastrantonio P, Pantosti A, Ru-bino A. Pathogenesis of post-antibiotic diarrhoea caused by Clostridium difficile: an in vitro study in the rabbit intestine. Gut 1988; 29: 598–602.
  • Fiorentini C, Arancia G, Paradisi S, et al. Effects of Clostrid-ium difficile toxins A and B on cytoskeleton organization in Hep-2 cell: a comparative morphological study. Toxicon 1989; 27: 1209–18.
  • Fiorentini C, Chow SC, Mastrantonio P, Jekldi-Tehrani M, Thelestam M. Clostridium difficile toxin A induces multinucle-ation in the human leukemic T cell line JURKAT. Eur J Cell Biol 1992; 57: 292–7.
  • Fiorentini C, Falzano L, Rivabene R, Fabbri A, Malomi W. N-acetylcysteine protects epithelial cells against the oxidative imbalance due to Clostridium difficile toxins. FEBM Lett 1999; 453: 124–8.
  • Fiorentini C, Malomi W, Paradisi S, Giuliano M, Mastranto-nio P, Donelli G. Interaction of Clostridium difficile toxin A with cultured cells: cytoskeletal changes and nuclear polariza-tion. Infect Immun 1990; 58: 2329–36.
  • Florin I, Thelestam M. Lysosomal involvement in cellular intoxication with Clostridium difficile toxin B. Microb Pathog 1986; 1: 373–85.
  • Malomi W, Fiorentini C, Paradisi S, Giuliano M, Mastranto-nio P, Donelli G. Surface blebbing and cytoskeletal changes induced in vitro by toxin B from C. difficile: an immunocyto-chemical and ultrastructural study. Exp Mol Pathol 1990; 52: 340–56.
  • Mitchell MJ, Laughon BE, Lin S. Biochemical studies on the effect of Clostridium difficile toxin B on actin in vivo and in vitro. Infect Immun 1987; 55: 1610–5.
  • Winger M, Lin S. Clostridium difficile toxins B induces reorganization of actin, vinculin and talin in cultured cells. Exp Cell Res 1988; 174: 215–29.
  • Pothoulakis C, Barone LM, Ely R, et al. Purification and properties of Clostridium difficile cytotoxin B. J Biol Chem 1986; 261: 1316–21.
  • Thelestam M, Florin. Cytopathogenic action of Clostridium difficile toxins. J Toxicol Toxin Rev 1984; 3: 139–80.
  • Von Eichel-Streiber C, Boquet P, Sauerbom M, Thelestam M. Large clostridial cytotoxins-a family of glycosyltrans-ferases modifying small GTP-binding proteins, Trends Micro-biol 1996; 4: 375–82.
  • Malomi W, Fiorentini C, Paradisi S, et al. Cell surface blebbing induced by toxin B from C. difficile: an in vitro study. Microecol Ther 1989; 18: 185–8.
  • Hofmann F, Busch C, Prepens U, Just I, Aktories K. Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. J Biol Chem 1997; 272: 11074–8.
  • Just I, Wilm M, Selzer J, et al. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J Biol Chem 1995; 270: 13932–6.
  • Just I, Selzer J, Wilm M, Von Eichel-Streiber C, Mann M, Aktories K. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 1995; 375: 500–3.
  • Sehr P, Joseph G, Genth H, Just I, Pick E, Aktories K. Glucosylation and ADP-ribosylation of Rho proteins-ef-fects on nucleotide binding, GTPase activity, and effector-coupling. Biochemistry 1998; 57: 5296–304.
  • Pradel E, Parker CT, Schnaitman CA. Structures of the rfaB, tfal, rfaJ, and rfaS genes of Escherichia coli K-12 and their roles in assembly of the lipopolysaccharide core. J Bacteriol 1992; 174: 4736–45.
  • Dillon ST, Rubin El, Yakubovich M, et al. Involvement of Ras-related Rho proteins in the mechanisms of action of Clostridium difficile toxin A and toxin B. Infect Immun 1995; 63: 1421–6.
  • Giry M, Popoff MR, von Eichel-Streiber C, Boquet P. Transient expression of RhoA,-B and -C GTPases in HeLa cells potentiates resistance to Clostridium difficile toxins A and B but not to Clostridium sorfellii lethal toxin. Infect Immun 1995; 63: 4063–71.
  • Just I, Fritz G, Aktories K, et al. Clostridium difficile toxin B acts on the GTP-binding protein Rho. J Biol Chem 1994; 269: 10706–12.
  • Just I, Richter HP, Prepens U, von Eichel-Streiber C, Akto-ries K. Probing the action of Clostridium difficile toxin B in Xenopus laevis oocytes. J Cell Sci 1994; 107: 1653–9.
  • Just I, Selzer J, Von Eichel-Streiber C, Aktories K. The low molecular mass GTP-binding protein Rho is affected by toxin A from Clostridium difficile. J Clin Invest 1995; 95: 1026–31.
  • Fiorentini C, Donelli G, Nicotera P, Thelestam M. Clostrid-ium difficile toxin A elicits Ca2 + independent cytotoxic effects in cultured normal rat intestinal crypt cells. Infect Immun 1993; 61: 3988–93.
  • Fiorentini C, Fabbri A, Falzano L. Enterotoxins which induce apoptosis or protect against apoptosis in epithelial cells. In: Rampal P, Boquet P, eds. Recent Advances in the Pathogenesis of Gastrointestinal Bacterial Infections. 1998: 175–89.
  • Fiorentini C, Fabbri A, Falzano L, et al. Clostridium difficile toxin B induces apoptosis in intestinal cultured cells. Infect Immun 1998; 66: 2660–5.
  • Mahida YR, Makh S, Hyde S, Gray T, Bothell° SP. Effect of Clostridium difficile toxin A on human intestinal epithelial cells: induction of interleukin 8 production and apoptosis after cell detachment. Gut 1996; 38: 337–47.
  • Flegel WA, Muller F, Daubener W, Fischer H-G, Haddin U, Norhoff H. Cytokine response by human monocytes to Clostridium difficile toxin A and toxin B. Infect Immun 1991; 59: 3659–66.
  • Pothoulakis C, Sullivan R, Melnick DA, et al. Clostridium difficile toxin A stimulates intracellular calcium release and chemotactic response in human granulocytes. J Clin Invest 1988; 81: 1741–5.
  • Haslam SC, Ketley JM, Mitchell TJ, Stephen J, Burdon DW, Candy DCA. Growth of Clostridium difficile and production of toxins A and B in complex and defined media. J Med Microbiol 1986; 21: 293–7.
  • Giuliano M, Piemonte F, Mastrantonio P. Production of an enterotoxin different from toxin A by Clostridium difficile. FEMS Microbiol Lett 1988; 50: 191–4.
  • Arcieri R, Dionisi AM, Caprioli A, et al. Direct detection of Clostridium perfringens enterotoxin in patients' stools during an outbreak of food poisoning. FEMS Immunol Med Micro-biol 1999; 23: 45–8.
  • McClane BA An overview of Clostridium perfringens entero-toxin. Toxicon 1996; 34: 1335–43.
  • Wiechkowski EU, Kokai-Kun JF, McClane BA. Characteri-zation of membrane-associated Clostridium perfringens en-terotoxin following pronase treatment. Infect Immun 1998; 66: 5897–905.
  • Ike Y, Hashimoto H, Clewell DB. High incidence of hemolysin production by Enterococcus (Streptococcus) fae-calis strains associated with human parenteral infections. J Clin Microbiol 1987; 25: 1524–8.
  • Gilmore MS, Segarra RA, Booth MC, Bogie CP, Hall LR, Clewell DB. Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its rela-tionship to lantibiotic determinants. J Bacteriol 1994; 176: 7335–44.
  • Brock TD, Davie JM. Probable identity of a group D hemolysin with a bacteriocine. J Bacteriol 1994; 86: 708–12.
  • Brock TD, Peacher B, Pierson D. Survey of the bacteriocins of enterococci. J Bacteriol 1963; 86: 702–7.
  • Booth MC, Bogie CP, Sahl HG, Siezen RJ, Hatter KL, Gilmore MS. Structural analysis and proteolytic activation of Enterococcus faecalis cytolisin, a novel lantibiotic. Mol Mi-crobiol 1996; 21: 1175–84.
  • Saris PE, Immonen T, Reis M, Sahl HG. Immunity to lantibiotics. Antonie Leeuwenhoek 1996; 69: 151–9.
  • Coburn PS, Hancock LE, Booth MC, Gilmore MS. A novel means of self-protection, unrelated to toxin activation, con-fers immunity to the bactericidal effects of the Enterococcus faecalis cytolysin. Infect Immun 1999; 67: 3339–47.
  • Segarra RA, Booth MC, Morales DA, Huycke MM, Gilmore MS. Molecular characterization of the Enterococcus faecalis cytolysin activator. Infect Immun 1991; 59: 1239–46.
  • Ike Y, Clewell DB, Segarra RA, Gilmore MS. Genetic analysis of the pAD1 hemolysin/bacteriocin determinant in Enterococcus faecalis: Tn917 insertional mutagenesis and cloning. J Bacteriol 1990; 172: 155–63.
  • Chow JW, Thal LA, Perri MB, et al. Plasmid-associated hemolysin and aggregation substance production contributes to virulence in experimental enterococcal endocarditis. An-timicrob Agents Chemother 1993; 37: 2474–7.
  • Ike Y, Hashimoto H, Clewell DB. Hemolysin of Streptococ-cus faecalis subspecies zymogenes contributes to virulence in mice. Infect Immun 1984; 45: 528–30.
  • Jett BD, Huycke MM, Gilmore MS. Virulence of enterococci. Clin Microbiol Rev 1994; 7: 462–78.
  • Jett BD, Jensen HG, Nordquist RE, Gilmore MS. Contribu-tion of the pAD1-encoded cytolysin to the severity of exper-imental Enterococcus faecalis endophthalmitis. Infect Immun 1992; 60: 2445–52.
  • Huycke MM, Spiegel CA, Gilmore MS. Bacteremia caused by hemolytic, high level gentamicin-resistant Enterococcus fae-calis. Antimicrob Agents Chemother 1991; 35: 1626–34.
  • Libertin CR, Dumitru R, Stein DS. The hemolysin/bacteri-ocin produced by enterococci is a marker of pathogenicity. Diagn Microbiol Infect Dis 1992; 15: 115–20.
  • Sears CL, Kaper JB. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol Rev 1996; 60: 167–215.
  • Sixma TK, Pronk SE, Kalk KM, et al. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 1991; 351: 371–7.
  • Moss J, Vaughan M. Activation of cholera toxin and heat-labile enterotoxins by ADP-ribosylation factors, a family of 20 kDa guanine nucleotide binding proteins. Mol Microbiol 1991; 5: 2621–7.
  • Majoul IV, Bastiaens PIH, Soling HM. Transport of an external lys-Asp-Glu-Leu (KDEL) protein from the plasma membrane to the endoplasmic reticulum: studies with cholera toxin in Vero cells. J Cell Biol 1996; 133: 777–89.
  • Guerrant RL, Fang GD, Thielman MH, Fonteles MC. Role of platelet activating factor (PAF) in the intestinal epithelial secretory and chinese hamster ovary (CHO) cell cytoskeletal responses to cholera toxin. Proc Natl Acad Sci USA 1998; 91: 9655–8.
  • Peterson JW, Ochoa LG. Role of prostaglandins and cAMP in the secretory effects of cholera toxin. Science 1989; 245: 857–9.
  • Nilsson O, Cassuto J, Larsson PA, et al. 5-hydroxy tryptamine and cholera secretion: a histochemical and physi-ological study in cats. Gut 1983; 24: 542–8.
  • Jiang MA, Kirchgessner A, Gershon MD, Surprenant A. Cholera toxin-sensitive neuron in Guinea-pig submucosal plexus. Am J Physiol 1993; 264: G86–94.
  • Pickett CL, Twiddy EM, Coker C, Holmes RA. Cloning, nucleotide sequence and hybridization studies of the type 2b heat-labile enterotoxin gene of Escherichia coli. J Bacteriol 1989; 171: 4945–52.
  • So M, McCarthy BJ. Nucleotide sequence of the bacterial transposon Tn 1681 encoding heat-stable (ST) toxin and its identification in enteropathogenic Escherichia coli strains. Proc Natl Acad Sci USA 1980; 77: 4011–5.
  • Cohen NB, Guarino A, Shulka R, Giannella RA. Age-re-lated differences in receptors for Escherichia coli heat-stable enterotoxin in the small and large intestine of children. Gastroenterology 1988; 94: 367–73.
  • Matthews JB, Smith JA, Tally KJ, et al. Na + K + 2 Cl cotransport and Cl secretion evoked by heat-stable entero-toxin is microfilament dependent in T84 cells. Am J Physiol 1994; 265: G373–8.
  • Piken RM, Mazaitis AJ, Maas WK, Rey M, Heyneiker H. Nucleotide sequences of the gene for heat-stable enterotoxin 2 of Escherichia coli. Infect Immun 1983; 42: 269–75.
  • Caprioli A, Falbo V, Roda LG, Ruggeri FM, Zona C. Partial purification and characterization of an Escherichia coli toxic factor that induces morphological cell alterations. Infect Immun 1983; 39: 1330–6.
  • Bisicchia R, Ciammarughi R, Caprioli A, Falbo V, Ruggeri FM. Toxin production and haemagglutination in strains of Escherichia coli from diarrhoea in Brescia, Italy. J Hyg Camb 1985; 95: 353–61.
  • Blanco J, Alonso MP, Gonzalez EA, Blanco M, Garabal JI. Virulence factors of bacteraemic Escherichia coli with partic-ular reference to production of cytotoxic necrotizing factor (CNF) by P-fimbriate strains. J Med Microbiol 1990; 31: 175–83.
  • Caprioli A, Donelli G, Falbo V, et al. A cell division-active protein from E. coli. Biochem Biophys Res Commun 1984; 118: 587–93.
  • De Rycke J, Mazars P, Nougayrede JP, et al. Mitotic block and delayed lethality in HeLa epithelial cells exposed to Escherichia coli BM2-1 producing cytotoxic necrotizing fac-tor type 1. Infect Immun 1996; 64: 1694–705.
  • Donelli G, Fiorentini C. Cytotoxic necrotizing factors (Es-cherichia coli). In: Montecucco C, Rappuoli R, eds. Guide-book to Protein Toxins and Their Use in Cell Biology. Oxford: Oxford University Press, 1997: 69–71.
  • Donelli G, Fiorentini C, Falzano L, Fabbri A, Boquet P. In vitro studies of the mechanism of action of the cytotoxic necrotizing factor 1 from pathogenic E. coli. Microecol Ther 1995; 23: 107–10.
  • Donelli G, Fiorentini C, Falzano L, Pouchelet M, Oswald E, Boquet P. Effects induced by the cytotoxic necrotizing factor 1 (CNF1) from pathogenic E. coli on cultured epithelial cells. In: Witholt et al., eds. Bacterial Protein Toxins. Zbl Bakt, 1994; 24(suppl.): 60–71.
  • Falbo V, Famiglietti M, Caprioli A. Gene block encoding production of cytotoxic necrotizing factor 1 and hemolysin in Escherichia coli isolates from extraintestinal infections. Infect Immun 1992; 60: 2182–7.
  • Falbo V, Pace T, Picci L, Pizzi E, Caprioli A. Isolation and nucleotide sequence of the gene encoding cytotoxic necrotiz-ing factor 1 of Escherichia coli. Infect Immun 1993; 61: 4909–14.
  • Falzano L, Fiorentini C, Boquet P, Donelli G. Interaction of Escherichia coli cytotoxic necrotizing factor type 1 (CNF1) with cultured cells. Cytotechnology 1993; 11(suppl.): 56–8.
  • Fiorentini C, Boquet P, Donelli G. Interaction of cytotoxic necrotising factor type 1 (CNF1) from pathogenic E. coli with mammalian cells. Microecol Ther 1995; 25: 255–8.
  • De Rycke J, Guillot JF, Boivin R. Cytotoxins in non-entero-toxigenic strains of Escherichia coli isolated from feces of diarrheic calves. Vet Microbiol 1987; 15: 137–50.
  • Caprioli A, Falbo V, Ruggeri FM, et al. Cytotoxic necrotiz-ing factor production by hemolytic strains of Escherichia coli causing extraintestinal infections. J Clin Microbiol 1987; 25: 146–9.
  • Caprioli A, Falbo V, Ruggeri FM, Minelli F, Orskov I, Donelli G. Relationship between Cytotoxic Necrotizing Fac-tor production and serotype in hemolytic Escherichia coli. J Clin Microbiol 1989; 27: 758–61.
  • Caprioli A, Donelli G, Falbo V, Passi C, Pagano A, Manto-vani A. Antimicrobial resistance and production of toxins in Escherichia coli strains from wild ruminants and the alpine marmot. J Wildlife Dis 1991; 27: 324–7.
  • Prada J, Baljer G, De Rycke JD, et al. Characteristics of alpha-hemolytic strains of Escherichia coli isolated from dogs with gastroenteritis. Vet Microbiol 1991; 29: 59–73.
  • Blum G, Falbo V, Caprioli A, Hacker J. Gene cluster encoding the cytotoxic necrotizing factor type 1 Prs fimbriae and a hemolysin from the pathogenicity island II of the uropathogenic Escherichia coli stain 96. FEMS Microbiol Lett 1995; 126: 189–96.
  • Lemichez E, Flatau G, Bruzzone M, Boquet P, Gauthier M. Molecular localization of the Escherichia coli cytotoxic ne-crotizing factor CNF1 cell-binding and catalytic domains. Mol Microbiol 1997; 24: 1061–70.
  • Fabbri A, Gauthier M, Boquet P. The 5' region of CNF1 harbours a translational regulatory mechanism for CNF1 synthesis and encodes the cell binding domain of the toxin. Mol Microbiol 1999; 33: 108–18.
  • Fiorentini C, Arancia G, Caprioli A, Falbo V, Ruggeri FM, Donelli G. Cytoskeletal changes induced on HEp-2 cells by the cytotoxic necrotizing factor (CNF) of Escherichia coli. Toxicon 1988; 26: 1047–56.
  • Fiorentini C, Donelli G, Matarrese P, Fabbri A, Paradisi S, Boquet P. Escherichia coli cytotoxic necrotizing factor 1: evidence for induction of actin assembly by constitutive activation of the p21 Rho GTPase. Infect Immun 1995; 63: 3936–44.
  • Matarrese P, Paradisi S, Fabbri A, Fiorentini C, Donelli G. A toxic factor from pathogenic E. coli strains enhances actin assembly in epithelial cultured cells. J Exp Clin Cancer Res 1995; 14: 78–9.
  • Oswald E, Sugai M, Labigne A, et al. Cytotoxic necrotizing factor type 2 produced by virulence Escherichia coli modifies the small GTP-binding proteins Rho involved in assembly of actin stress fibers. Proc Natl Acad Sci USA 1994; 91: 3814–8.
  • Flatau G, Lemichez E, Gauthier M, et al. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 1997; 387: 729–33.
  • Boquet P, Flatau G, Gauthier M, et al. Deamidation of Rho glutamine 63 by CNF1, a toxin inducing actin stress fiber formation. In: Hacker J et al., eds. Bacterial Protein Toxins. Zent bl Bakteriol, 1998; suppl. 29: 175–83.
  • Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K. Gin 63 of Rho is deamidatekl by Escherichia coli cytotoxic necrotizing factor-1. Nature 1997; 387: 725–9.
  • Rittinger K, Walker PA, Frcleston JF, Smerdon SJ, Gam-blin SJ. Structure at 1.65 Angstrom of RhoA and its GT-Pase-activating protein in complex with transition state analog. Nature 1997; 389: 758–62.
  • Lenn M, Selzer J, Hoffmeyer A, Rapp UR, Aktories K, Schmidt G. Deamidation of Cdc42 and Rac by Escherichia coli cytotoxic necrotizing factor 1: activation of c-Jun N-ter-minal kinase in HeLa cells. Infect Immun 1999; 67: 496–503.
  • Fiorentini C, Fabbri A, Flatau G, et al. Escherichia coli cytotoxic necrotizing factor 1 (CNF1): a toxin which acti-vates the rho GTPase. J Biol Chem 1997; 272: 19532–7.
  • Lacerda HM, Pullinger GD, Lax AJ, Rozengurt E. Cyto-toxic necrotizing factor 1 from Escherichia coli and dermone-crotic toxin from Bordetella bronchiseptica induce p21 Rho-dependent tyrosine phosphorylation of focal adhesion kinase and paxiffin in Swiss 3T3 cells. J Biol Chem 1999; 272: 9587–96.
  • Falzano L, Fiorentini C, Donelli G, et al. Induction of phagocytic behaviour in human epithelial cells by E. coli cytotoxic necrotizing factor type 1. Mol Microbiol 1993; 9: 1247–54.
  • Hofman P, Flatau G, Selva E, et al. Escherichia coli cyto-toxic necrotizing factor 1 effaces microvilli and decreases transmigration of polymorphonuclear leukocytes in intesti-nal T84 epithelial cell monolayers. Infect Immun 1998; 66: 2494–500.
  • Fiorentini C, Fabbri A, Matarrese P, Falzano L, Boquet P, Malorni W. Hinderance of apoptosis and phagocytic be-haviour induced by Escherichia coli cytotoxic necrotizing factor 1: two related activities in epithelial cells. Biochem Biophys Res Comm 1997; 241: 341–6.
  • Fiorentini C, Matarrese P, Straface E, et al. Toxin-induced activation of rho GTP-binding protein increases Bc1-2 ex-pression and protects against apoptosis. Exp Cell Res 1998; 242: 341–50.
  • Fiorentini C, Matarrese P, Straface E, et al. Rho-dependent cell spreading activated by E. coli cytotoxic necrotizing factor 1 hinders apoptosis in epithelial cells. Cell Death Diff 1998; 5: 921–9.
  • Ruoslahti E. Stretching is good for a cell. Science 1997; 276: 1345–6.
  • Scott DA, Kaper JB. Cloning and sequencing of the genes encoding Escherichia coli cytolethal distending toxin. Infect Immun 1994; 62: 244–51.
  • Comayras C, Tasca C, Peres SY, Ducommun B, Oswald E, De Rycke J. Escherichia coli cytolethal distending toxin blocks the HeLa cell cycle at the G2/M transition by pre-venting cdc2 protein kinase dephosphorylation and activa-tion. Infect Immun 1997; 65: 5088–95.
  • Pickett CL, Whitehouse CA. The cytolethal distending toxin family. Trends Microbiol 1999; 7: 292–7.
  • Tranter HS. Foodbome staphylococcal illness. Lancet 1990; 336: 1044–6.
  • Alouf JE, Knoll H, Kohler W. The family of mitogenic, shock-inducing and superantigenic toxins from staphylococci and streptococci. In: Alouf JE, Freer JG, eds. Sourcebook of bacterial protein toxins. London: Academic Press Ltd, 1991: 367–414.
  • Bergdoll MS. The role of the staphylococcal enterotoxins in staphylococcal disease. In: Falmagne P, Alouf JE, Fehren-bach FJ, Jeliaszewicz J, Thelestam M, eds.Bacterial ProteinToxins.Stuttgart: Gustav Fischer, Zent bl Bakteriol, 1988; suppl. 15.
  • Johnson HM, Russell JK, Pontzer CH. Staphylococcal en-terotoxin microbial superantigens. FASEB J 1991; 5: 2706–12.
  • Betley MJ, Mekalanos JJ. Staphylococcal enterotoxin A is encoded by phage. Science 1985; 229: 185–7.
  • Spero L, Johnson-Winger A, Schmidt JJ. Enterotoxins of Staphylococci. In: Hardegree CM, Tu AT, eds. Handbook of Natural Toxins. New York: Dekker, 1988: 131–63.
  • Buxser S, Bonventre PF, Archer DL. Specific receptor bind-ing of staphylococcal enterotoxins by mum in spienie lymphocytes. Infect Immun 1981; 33: 827–33.
  • James SP. Potential role of superantigens in gastrointestinal disease. Gastroenterology 1993; 105: 1569–71.
  • Fleischer B, Schrezenmeier H. T-cell stimulation by Staphy-lococcal enterotoxins. Clonally variable response and re-quirement for major histocompatibility complex Class II molecules on accessory or target cells. J Exp Med 1988; 167: 1697–707.
  • Elias J, Shields R. Influence of staphylococcal enterotoxin on water and electrolyte transport in the small intestine. Gut 1976; 17: 527–35.
  • Huang KC, Chen TST, Rout WR. Effect of staphylococcal enterotoxins A, B, and C on ion transport and permeability across the flounder intestine. Proc Soc Exp Biol Med 1974; 147: 250–4.
  • Sullivan NM, Asano T. Effects of staphylococcal entero-toxin B on intestinal transport in the rat. Am J Physiol 1971; 220: 1793–7.
  • Bernheimer AW, Rudy B. Interactions between membranes and cytolytic peptides. Biochim Biophys Acta 1986; 864: 123–41.
  • Kapral FA. Staphylococcus aureus delta toxin as an entero-toxin. In: Everekl D, Whelan J, eds. Microbial toxins and diarrhoeal disease. London: Pitman, 1985: 215–29.
  • Kapral FA, O'Brien AD, Ruff PD, Drugan Jr WJ. Inhibi-tion of water absorption in the intestine by Staphylococcus aureus delta-toxin. Infect Immun 1976; 13: 140–5.
  • O'Brien AD, McCling HJ, Kapral FA. Increased tissue conductance and ion transport in guinea pig ileum after exposure to Staphylococcus aureus delta-toxin in vitro. Infect Immun 1978; 21: 102–13.
  • O'Brien AD, Kapral FA. Increased cyclic adenosine 3', 5'-monophosphate content in guinea pig ileum after expo-sure to Staphylococcus aureus delta-toxin. Infect Immun 1976; 13: 152–62.
  • Donelli G, Mastrantonio P. Bacterial virulence factors in inflammatory bowel disease. In: Caprilli R, ed. Inflammatory Bowel Disease: Trigger Factors and Trends in Therapy. Stuttgart: Schattauer, 1997: 25–34.