181
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Flora: Role in Colonisation Resistance and Other Effects; Production of Antimicrobial Peptides

Pages 216-222 | Published online: 11 Jul 2009

References

  • Boman HG. Peptide antibiotics and their role in innate immunity. Ann Rev Immunol 1995; 13: 61–92.
  • Normark S. Första linjens skydd drar igang kroniska infl-ammatoriska processer? Läkartidningen 1999; 48: 5346–50.
  • Schonwetter BS, Stolzenberg ED, Zasloff MA. Epithelial antibiotics induced at sites of inflammation. Science 1995; 267: 1645–8.
  • Andersson M, Gunne H, Agerberth B, Boman A, Bergman T, Olsson B, Dagerlind A, Wigzell H, Boman HG, Gud-mundsson GH. NK-lysin, structure and function of a novel effector molecule of porcine T and NK cells. Vet Immunol Immunopathol 1996; 54: 123–6.
  • Ganz T. Defensins and host defense. Science 1999; 286: 420–1.
  • Morrison GM, Davidson DJ, Dorin JR. A novel mouse beta defensin, Defb2, which is upregulated in the airways by lipopolysaccharide. FEBS Lett 1999; 442: 112–6.
  • Tang Y-Q, Yuan J, ösapay G, ösapay K, Tran D, Miller CJ, Oulette AJ, Selsted ME. A cyclic antimicrobial peptide produced in primate leucocytes by the ligation of two tun-cated ii-defensins. Science 1999; 286: 498–502.
  • Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schröder JM, Wag JM, Howard OMZ, Oppenheim JJ. fl-defensins: Linking innate and adaptive immunnity through dendritic and T cell CCR6. Science 1999; 286: 525–8.
  • Elsbach P. Antibiotics from within: antibacterials from hu-man and animal sources. Trends Biotechnol 1990; 8 (1): 26–30.
  • Mahida YR. Mechanisms of host protection and inflamma-tion in the gastrointestinal tract. J R Coll Physicians Lond 1997a; 31: 493–7.
  • Mahida YR, Rose F, Chan WC. Antimicrobial peptides in the gastrointestinal tract. Gut 1997; 40: 161–3.
  • Axelsson L-G, Boman A, Midtvedt T, Boman HG. The small intestine of germ-free mice contains antibacterial fac-tors: a bacterial monocontamination induces additional an-tibacterial peptides, a responsethat is blocked by a cortisone pretreatment. Microbial Ecol Health Dis 1999; 11: 116–7.
  • Ahonen A. Histochemical and electron microscopic observa-tions on the development, neural control and function of the Paneth cells of the mouse. Acta Physiol Scand 1973; suppl. 398: 1–71.
  • Rodning CB, Erlandsen SL, Wilson ID. Light microscopic morphometric analysis of rat Real mucosa: II. Component quantitation of Paneth cells. Anat Rec 1982; 204: 33–8.
  • Roth KA, Hertz JM, Gordon JI. Mapping enteroendocrine cell populations in transgenic mice reveals an unexpected degree of complexity in cellular differentiation within the gastrointestinal tract. J Cell Biol 1990; 110: 1791–801.
  • Rubin DC, Swietlicki E, Roth KA, Gordon JI. Use of fetal intestinal isografts from normal and transgenic mice to study the programming of positional information along the duodenal-to-colonic axis. J Biol Chem 1992; 267: 15122–33.
  • Bohe M, Borgström A, Lindström C, Ohlsson K. Trypsin-like immunoreactivity in human Paneth cells. Digestion 1984; 30: 271–5.
  • Weinberg A, Krisanaprakornkit S, Dale BA. Epithelial an-timicrobial peptides: review and significance for oral applic-lions. Crit Rev Oral Biol Med 1998; 9: 399–414.
  • Bevins CL, Zasloff M. Peptides from frog skin. Annu Rev Biochem 1990; 59: 395–414.
  • Jacob L, Zasloff M. Potential therapeutic applications of magainins and other antimicrobial agents of animal origin. Ciba Found Symp ;:197-216 1994; 186: 216–23.
  • Simmaco M, Boman A, Mangoni ML, Mignogna G, Miele R, Barra D, Boman HG. Effect of glucocorticoids on the synthesis of antimicrobial peptides in amphibian skin. FEBS Lett 1997; 416: 273–5.
  • Simmaco M, Mangoni ML, Boman A, Barra D, Boman HG. Experimental infections of Rana esculenta with Aeromonas hydrophda: A molecular mechanism for the con-trol of the normal flora. Scand J Immunol 1998; 48: 357–63.
  • Lencer WI, Cheung G, Strohmeier GR, Currie MG, Ouel-lette AJ, Selsted ME, Madara JL. Induction of epithelial chloride secretion by channel-forming cryptdins 2 and 3. Proc Natl Acad Sci USA 1997; 94: 8585–9.
  • Sepp E. Formation of intestinal microbial ecosystem in chil-dren. Dissertationes Medicinae Universitatis Tartunensis 43, Tartu University Press, Tartu 1998 (ISBN 9985-56-334–4).
  • Salzman NH, Polin RA, Harris MC, Ruchelli E, Hebra A, Zirin-Butler S, Jawad A, Porter EM, Bevins CL. Enteric defensin expression in necrotizing enterocolitis. Pediatr Res 1998; 44: 20–6.
  • Verity MA, Melinkoff SM, Frankland M, Greipel M. Sero-tonin and argentaffin and Paneth cell changes in ulcerative colitis. 1962; 43 (1): 24–31.
  • Aaraneo BA, Beuth J, Cebra JJ, Fuller R, Heidt PJ, Midtvedt T. Problems and priorities for controlling oppor-tunistic pathogens with new antimicrobial strategies: an overview of current litterature. Zbl Bakt 1996; 283: 431–65.
  • Aavitsland P. Med EU mot antimikrobiell resistens. Tidskr Nor Lwgeforen 1998; 118: 4064.
  • Lystad A. Antibiotikaresistens-et problem pa frammarsj. Tidskr Nor Lwgeforen 1998; 18: 4064.
  • Lee J-Y, Boman A, Sun C, Andersson M, Jornvall H, Mutt V, Boman HG. Antibacterial peptides from pig intestine: Isolation of a mammalian cecropin. Proc Natl Acad Sci USA 1989; 86: 9159–62.
  • Ouellette AJ, Hsieh MM, Nosek MT, Cano-Gauci DF, Huttner KM, Buick RN, Selsted ME. Mouse Paneth cell defensins: primary structures and antibacterial activities of numerous cryptdin isoforms. Infect Immun 1994; 62: 5040–7.
  • Porter EM, Liu L, Oren A, Anton PA, Ganz T. Localiza-tion of human intestinal defensin 5 in Paneth cell granules. Infect Immun 1997a; 65: 2389–95.
  • Porter EM, vanDam E, Valore EV, Ganz T. Broad-spec-trum antimicrobial activity of human intestinal defensin 5. Infect Immun 1997b; 65: 2396–401.
  • Boman HG, Agerberth B, Boman A. Mechanisms of action on Esherichia coli of cecropin P1 and PR-39, two antibacte-rial peptides from pig intestine. Infect Immun 1993; 61: 2978–84.
  • Boman HG. Innate immunity and the normal microflora. Immunol Rev 2000; 173: 5–16.
  • Ganz T, Lehrer RI. Defensins. Curr Opin Immunol 1994; 6: 584–9.
  • Yount NY, Wang M-SC, Yuan J, Banaiee N, Ouellette AJ, Selsted ME. Rat neutrophil defensins: precursor structures and expression during neutrophilic myelopoiesis. J Immunol 1995; 155: 4476–84.
  • Selsted ME, Tang Y-Q, Morris WL, McGuire PA, Novotny MJ, Smith W, Henschen AH, Cullor JS. Purification, pri-mary structures, and antimicrobial activities of fi -defensins, a new family of antimicrobial peptides from bovine neu-trophils. J Biol Chem 1993; 268: 6641–8.
  • Casteels P, Ampe C, riviere L, Van Damme J, Elicone J, Fleming M, Jacobs F, Tempst P. Isolation and characteriza-tion of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur J Biochem 1990; 187: 381–6.
  • Casteels P, Tempst P. Apidaecin-type peptide antibiotics func-tion through a non-poreforming mechanism involving stereospecificity. Biochem Biophys Res Corn 1994; 199: 339–45.
  • Sklerlavaj B, Romeo D, Gennaro R. Rapid membrane pe-mealization and inhibition of vital functions of Gram-nega-tive bacteria by bactenectins. Infec Immun 1990; 58: 3724–30.
  • Bulet P, Dimarcq J-L, Hetru C, Lagueux M, Chariet M, Hegy G, van Dorsselaer A, Hoffman JA. A novel inducible antibac-terial peptide of Drosphila carries an O-glycosylatekl substitu-tion. J Biol Chem 1993; 268: 14893–7.
  • Selsted ME, Novotny MJ, Morris WL, Tang Y-Q, Smith W, Cullor JS. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem 1992; 267: 4292–5.
  • Tomita M, Bellamy W, Takase M, Yamauchi K, Waka-bayashi H, Kawase K. Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 1991; 74: 4137–42.
  • Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH. PR-39, a proline-rich peptide antibiotic from pig, and FALL-39, a tentative human counterpart. Vet Immunol Immunopathol 1996; 54: 127–31.
  • Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 1987; 84: 5449–53.
  • Selsted ME, Brown DM, DeLange RJ, Lehrer RI. Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages. J Biol Chem 1983; 258: 14485–9.
  • Williams RW, Starman R, Taylor KMP, Bable K, Beeler T, Zasloff M, Covell D. Raman spectroscopy of synthetic an-timicrobial frog peptides magainin 2a and PGLa. Biochem-istry 1990; 29: 4490–6.
  • Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH. FALL-39, a putative human peptide an-tibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci USA 1995; 92: 195–9.
  • Diamond G, Russell JP, Bevins CL. Inducible expression of an antibiotic peptide gene in lipopolysaccharide-challenged tracheal epitelial cells. Proc Natl Acad Sci USA 1996; 93: 5156–60.
  • Falk P, Roth KA, Gordon JI. Lectins are sensitive tools for defining the differentiation programs of mouse gut epithelial cell lineages. Am J Physiol 1994; 266 (29): G987–G1003.
  • Falk PG, Hooper LV, Midtvedt T, Gordon JI. Creating and maintaining the gastrointestinal ecosystem: What we know and need to know from gnotobiology. Microbiol Mol Biol Rev 1998; 62: 1157–70.
  • Nevalainen TJ, Haapanen TJ, Rajala P, Ekfors T. Expression of group II phospholipase A in Panethcells of an adenoma of the rectum. APMIS 1998; 106: 780–4.
  • Selsted ME, Miller SI, Henschen AH, Ouelette AJ. Enteric defensins: antibiotic peptide components of intestinal host defense. J Cell Biol 1992a; 118: 929–36.
  • Sundström G, Helander HF. Quantitative electron micro-scopic studies on rat ileal Paneth cells under various physio-logical and experimental conditions. Hepat Gastroenterol 1980; 27: 286–93.
  • Wolff A, Moriera JE, Bevins CL, Hand AR, Fox PC. Ma-gainin-like immunoreactivity in human submandibular and labial salivary glands. J Histochem Cytochem 1990; 38: 1531–4.
  • Bry L, Falk P, Huttner K, Ouellette A, Midtvedt T, Gordon JI. Paneth cell differentiation in the developing intestine of normal and transgenic mice. Proc Natl Acad Sci USA 1994; 91: 10335–9.
  • Darmoul D, Ouellette AJ. Positional specificity of defensin gene expression reveals Panteh cell heterogeneity in mouse samll intestine. Am J Physiol 1996; 271: G68–74.
  • Darmoul D, Brown D, Selsted ME, Ouellette AJ. Cryptdin gene expression in developing mouse small intestine. Am J Physiol 1997; 272: G197–206.
  • Huttner KM, Brwinski-Caliguri DJ, Mahoney MM, Dia-mond G. Antimicrobial peptide expression is developmentally regulated in the ovine gastrointestinal tract. J Nutr 1998; 128 (Suppl. 2): 297S–299.
  • O'Neil DA, Porter EM, Elewaut D, Anderson GM, Eckmann L, Ganz T, Kagnoff MF. Expression and regulation of the human fl-defensins hBD-1 and hBD-2 in intestinal epithe-lium. J Immunol 1999; 163: 6718–24.
  • Rose F, Bailey K, Keyte JW, Chan WC, Greenwood D, Mahida YR Potential role of epithelial cell-derived histone H1 proteins in innate antimicrobial defence in the human gastrointestinal tract. Infect Immun 1998; 66: 3255–5.
  • Satoh Y. Ultrastructure of Paneth cells in germ-free rats, with special reference to the secretory granules and lysosomes. Arch Histol Jap 1984; 47: 293–301.
  • Satoh Y, Vollrath L. Quantitative electron microscopic obser-vations on Paneth cells of germfree and ex-germfree Wistar rats. Anat Embryol 1986; 173: 317–22.
  • Lencer WI. Paneth cells: on the frontline or in the back field? Gastroenterology 1998; 114: 1343–5.
  • Ouellette AJ, Selsted ME. Paneth cell defensins: endogenous peptide components of intestinal host defence. FASEB J 1996; 10: 1280–9.
  • Ouellette AJ. Paneth cells and innate immunity in the crypt microenvironment. Gastroenterology 1997; 113: 1779–84.
  • OuBette AJ, Lualdi JC. A novel mouse gene family coding for cationic, cysteine-rich peptides. Regulation in small intestine and cells of myeloid origin. J Biol Chem 1990; 265: 9831–7.
  • Jones DE, Bevins CL. Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem 1992; 267: 23216–25.
  • Garabedian EM, Roberts LJJ, McNevin MS, Gordon JI. Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice. J Biol Chem 1997; 272: 23729–40. (See commentary; Lencer WI. Paneth cells: on the frontline or in the back field? Gastroenterology 1998;114(6):1343-1345).
  • Zhang G, Ross CR, Dritz SS, Nietfeld JC, Blecha F. Salmonella infection increases porcine antibacterial peptide concentrations in serum. Clin Diag Lab Immunol 1997; 4: 774–7.
  • Cunliffe RN, Rose FRAJ, James PD, Mahida. YR. Expres-sion of antimicrobial neutrophil defensin and lysozyme is induced in epithelial cells of active inflammatory bowel dis-ease. Gastroenterology 1999; 116(4)pt2: A905.
  • Rose FRAJ, Cunliffe RN, Mahida YR. Injured primary human colonic epithelial cells release specific antimicrobial activity while undergoing apoptosis. Gut 1999; 44 (Suppl. 1): A92.
  • Miele R, Ponti D, Boman HG, Barra D, Simmaco M. Molec-ular cloning of a bombinin gene from Bombina orientalis: detection of NF-o-B and NF-1L6 binding sites in its promo-tor. FEBS Lett 1998; 431: 23–8.
  • Cruciani RA, Barker JL, Zasloff M, Chen HC, Colamonici O. Antibiotic magainins excert cytolytic activity against trans-formed cell lines through channel formation. Proc Natl Acad Sci USA 1991; 88: 3792–6.
  • Wilson CL, Oulette AJ, Satchell DP, Ayabe T, Lo'pez-l3oado YS, Stratman JL, Hultgren SJ, Matrisian LM, Parks WC. Regulation of intestinal ri-defensin activation by the metallo-proteinase matrilysin in innate host defense. Science 1999; 286: 113–7.
  • Chopra I, Hodgson J, Metcalf B, Poste G. The search for antimicrobial agents effective against bacteria resistant to multiple antibiotics. Antimicrob Agents Chemother 1997; 41: 497–503.