1,154
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Mechanisms of Colonisation and Colonisation Resistance of the Digestive Tract Part 1: Bacteria/host Interactions

Pages 223-239 | Published online: 11 Jul 2009

References

  • Adlerberth I, Jalil F, Carlsson B, et al. High turn over rate of Escherichia coli strains in the intestinal flora of infants in Pakistan. Epidemiol Infect 1998; 121: 587–98.
  • Tannock GW. In: Hanson LA, Yolken RH, eds. Probiotics, other nutritional factors and intestinal microflora. Vevey/ Lipincott-Raven Publishers, Philadelphia: Nestle Nutrition Workshop Series, 1999; 42, pp. 17–31.
  • Sears HJ, Brownlee I, Uchiyama JK. Persistence of individ-ual strains of Escherichia coli in the intestinal tract of man. J Bacteriol 1949; 59: 299–301.
  • Sears HJ, Brownlee I. Further observations on the persis-tence of individual strains of Escherichia coli in the intestinal tract of man. J Bacteriol 1951; 63: 47–57.
  • Sears HJ, James H, Saloum R, Brownlee I, Lameraux LF. Persistence of individual strains of Escherichia coli in man and dog under varying conditions. J Bacteriol 1956; 71: 370–2.
  • Lan AR, Gold F, Borderon JC, Laugier J, Lafont JP. Implantation and in vivo antagonistic effects of antibiotic-susceptible Ercherichia coli strains administered to premature newborns. Biol Neonate 1990; 58: 73–8.
  • Poisson DM, Borderon JC, Ammim-Sena JC, Laugier J. Evolution of the barrier effects against an exogenous drug-sensitive Escherichia coli strain after single or repeated oral administration to newborns and infants aged up to three months admitted to an intensive care unit. Biol Neonate 1986; 49: 1–7.
  • Havenaar R, ten Brink B, Huis in t'Veld JHJ. Selection of strains for probiotic use. In: Fuller R, ed. Probiotics, the scientific basis. London: Chapman and Hall, 1992, pp. 209–24.
  • Beachley EH. Bacterial adherence: adhesine receptor interac-tions mediating the attachment of bacteria to mucosal sur-face. J Infect Dis 1981; 143: 325.
  • Ahmé S, Nobaek S, Jeppsson B, Adlerberth I, Wold AE, Molin G. The normal Lactobacillus flora of healthy human oral and rectal mucosa. J Appl Microbiol 1998; 85: 88–94.
  • Dixon JMS. The fate of bacteria in the small intestine. J Pathol Bacteriol 1960; 79: 131–40.
  • Freter R, Stauffer E, Cleven D, Holdeman LV, Moore WEC. Continuous-flow cultures as in vitro models of the ecology of large intestinal flora. Infect Immun 1983; 39: 666–75.
  • Smith HW, Linggood MA. Observations on the pathogenic properties of the K88, HLY and ENT plasmids of Es-cherichia coli with particular reference to porcine diarrhoea. J Med Microbiol 1971; 4: 467–85.
  • Guiot HFL. Role of competition for substrate in bacterial antagonism in the gut. Infect Immun 1982; 38: 887–92.
  • Wadolkowski EA, Laux DC, Cohen PS. Colonization of the streptomycin-treated mouse large intestine by a human fae-cal Escherichia coli strain: role of growth in mucus. Infect Immun 1988; 56: 1030–5.
  • Salyers AA, Vercellotti JR, West SEH, Wilkins TD. Fermen-tation of mucin and plant polysacharides by strains of Bacteroides from the human colon. Appl Environ Microbiol 1977; 33: 319–22.
  • Zafriri D, Oron Y, Eisenstein B, Ofek I. Growth advantage and enhanced toxicity of Escherichia coli adherent to tissue culture cells due to restricted diffusion of products secreted by the cells. J Clin Invest 1987; 79: 1210–6.
  • Moore WEC, Cato EP, Holdeman LV. Some current con-cepts in intestinal bacteriology. Am J Clin Nutr 1978; 31: S33–42.
  • Nelson DP, Mata U. Bacterial flora associated with the human gastrointestinal mucosa. Gastroenterology 1970; 58: 56–61.
  • Poulsen LK, Licht TR, Rang C, Krogfeldt KA, Molin S. Physiological state of Escherichia coli BJ4 growing in the large intestines of streptomycin-treated mice. J Bacteriol 1995; 177: 5840–5.
  • Karjalainen T, Barc MC, Collignon A, et al. Cloning of a genetic determinant from Clostridium difficile involved in adherence to tissue culture cells and mucus. Infect Immun 1994; 62: 4347–55.
  • Reid G, McCroarty JA, Amgotti R, Cook RL. Lactobacillus inhibitor production against Escherichia coli and coaggrega-tion ability with uropathogens. Can J Microbiol 1988; 34: 344–51.
  • Kinder SA, Holt SC. Coaggregation between bacterial spe-cies. Meth Enzymol 1994; 236: 254–70.
  • Hultgren SJ, Abraham S, Caparon M, Falk P, St. Geme III JW, Normark S. Pilus and nonpilus bacterial adhesins: assembly and function in cell recognition. Cell 1993; 73: 887–901.
  • Klemm P. Fimbrial adhesins of Escherichia coli. Rev Infect Dis 1985; 7: 321–40.
  • McGroarty JA. Cell surface appendages of lactobacilli. FEMS Microbiol Lett 1994; 124: 405–10.
  • McCormick BA, Klemm P, Krogfelt KA, Burghoff RL, Laux DC, Cohen PS. E. coli F-18 phase locked 'on' for expression of type 1 fimbriae is a poor colonizer of the streptomycin-treated mouse large intestine. Microb Pathogen 1993; 14: 33–43.
  • Beuth J, Ko HL, Roszkowski W, Ohshima Y. Lectins: mediators of adhesion for bacteria in infectious diseases and for tumor cells in metastasis. Zbl Bakt 1990; 274: 350–8.
  • Beuth J, Stoffel B, Pulverer G. Inhibiton of bacterial adhe-sion and infections by lectin blocking. Adv Exp Med Biol 1996; 408: 51–6.
  • Araneo BA, Cebra JJ, Beuth J, et al. Problems and priorities for controlling opportunistic pathogens with new antimicro-bial strategies; an overview of current literature. Zbl Bakt 1996; 283: 431–65.
  • Weir DM. Carbohydrates as recognition molecules in infec-tion and immunity. FEMS Microbiol Immunol 1989; 1: 31–40.
  • Kim YS, Morita A, Miura S, Siddiqui B, Structure of glycoconjugates of intestinal mucosal membranes: role in bacterial adherence. In: Boedeker E,ed. Attachment of organisms to the gut mucosa, 1985, pp. 99–109.
  • Specian RD, Oliver MG. Functional biology of intestinal goblet cells. Am J Physiol 1991; 260 (2 Pt 1): C183–93.
  • Rousset M. The human colon carcinoma cell lines HT-29 and Caco-2: two in vitro models for the study of intestinal differentiation. Biochimie 1986; 68: 1035–40.
  • Watanabe K, Hakomori SI. Status of blood group carbohy-drate chains in ontogenesis and in oncogenesis. J Exp Med 1976; 144: 645–53.
  • Westerlund B, Korhonen TK. Bacterial proteins binding to the mammalian extracellular matrix. Mol Microbiol 1993; 9: 687–94.
  • Patti JM, Allen BL, McGavin MJ, Hook M. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 1994; 48: 585–617.
  • Foster TJ, McDevitt D. Surface-associated proteins of Staphylococcus aureus: their possible roles in virulence. FEMS Microbiol Lett 1994; 118: 199–205.
  • Shen W, Steinruck H, Ljung A. Expression of binding of plasminogen, thrombospondin, vitronectin and fibrinogen, and adhesive properties by Escherichia coli strains isolated from patients with colonic diseases. Gut 1995; 36: 401–6.
  • Kukkonen M, Raunio T, Virkola R, Latheenmaki K, Makela PH, Klemm P, Clegg S, Korhonen TK. Basement membrane carbohydrate as a target for bacterial adhesion: binding of type 1 fimbriae of Salmonella enterica and Es-cherichia coli to laminin. Mol Microbiol 1993; 7: 229–37.
  • Westerlund B, Kuusela P, Vartio T, Van Die I, Korhonen TK. A novel lectin-independent interaction of P fimbriae of Escherichia coli with immobilized fibronectin. FEBS Lett 1989; 243: 199–204.
  • Virkola R, Parkkinen J, Hacker J, Korhonen T. Sialy-loligosaccharide chains of laminin as an extracellular matrix target for S fimbriae of Escherichia coli. Infect Immun 1993; 61: 4480–4.
  • Westerlund B, Kuusela P, Risteli J, et al. The 075X adhesin of uropathogenicEscherichia coli is a type IV collagen-bind-ing protein. Mol Microbiol 1989; 3: 329–37.
  • Sjobring U, Pohl G, Olsen A. Plasminogen, absorbed by Escherichia coli expressing curli or by Salmonella enteritidis expressing thin aggregative fimbriae, can be activated by simultaneously captured tissue-type plasminogen activator (t-PA). Mol Microbiol 1994; 14: 443–52.
  • Parkkinen J, Hacker J, Korhonen T. Enhancement of tissue plasminogen activator-catalyzed plasminogen activation by Escherichia coli S fimbriae associated with neonatal sep-ticemia and meningitis. Thromb Haemostasis 1991; 65: 483–6.
  • Parkkinen J, Korhonen TK. Binding of plasminogen to Escherichia coli adhesion proteins. FEBS Lett 1989; 250: 437–40.
  • Korhonen TKKL, Kukkonen M, Pouttu R, et al. Plasmino-gen receptors. Turning Salmonella and Escherichia coli into proteolytic organisms. Adv Exp Med Biol 1997; 412: 185–92.
  • Rich RL, Kreikemeyer B, Owens RT, et al. Ace is a colla-gen-binding MSCRAMM from Enterococcus faecalis. J Biol Chem 1999; 274: 26939–45.
  • Jett BD, Huycke MM, Gilmore MS. Virulence of entero-cocci. Clin Microbiol Rev 1994; 7: 462–78.
  • Zareba TW, Pascu C, Hryniewicz W, Wadstrom T. Binding of extracellular matrix proteins by enterococci. Curr Micro-biol 1997; 34: 6–11.
  • Xiao J, Hook M, Weinstock GM, Murray BE. Conditional adherence of Enterococcus faecalis to extracellular matrix proteins. FEMS Immunol Med Microbiol 1998; 21: 287–95.
  • Kuusela P. Fibronectin binds to Staphylococcus aureus. Na-ture 1978; 276: 718–20.
  • Flock JI, Froman G, Jonsson K, Guss B, Signäs C, Nilsson B, Raucci G, Hook M, Wadstrom T. Cloning and expres-sion of the gene for a fibronectin-binding protein from Staphylococcus aureus. EMBO 1987; 6: 2351–7.
  • Park PW, Roberts DD, Grosso LE, et al. Binding of elastin to Staphylococcus aureus. J Biol Chem 1991; 266: 23399–406.
  • Liang OD, Ascencio F, Vazquez-Juraez R, Wadstrom T. Binding of collagen, fibronectin, lactoferrin, laminin, vit-ronectin and heparan sulphate to Staphylococcus aureus strain V8 at various growth phases and under nutrient stress conditions. Int J Med Microbiol Virol Parasitol Infect Dis 1993; 279: 180–90.
  • McGavin MH, Krajewska-Pietrasik D, Ryden C, Hook M. Identification of a Staphylococcus aureus extracellular ma-trix-binding protein with broad specificity. Infect Immun 1993; 61: 2479–85.
  • Kuusela P, Ullberg M, Kronvall G, Tervo T, Tarkkanen A, Saksela O. Surface-associated activation of plasminogen on gram-positive bacteria. Effect of plasmin on the adherence of Staphylococcus aureus. Acta Ophtalmol Suppl 1992; 202: 42–6.
  • Aleljung P, Paulsson, Emody L, Andersson M, Naidu, AS, Wadstrom T. Collagen binding by lactobacilli Curr Micro-biol 1991; 22: 33–8.
  • McGrady JA, Butcher WG, Beighton D, Switalski LM. Specific and charge interactions mediate collagen recognition by oral lactobacilli. J Dent Res 1995; 74: 649–57.
  • Lindgren SE, Swaisgood HE, Janolino VG, et al. Binding of Lactobacillus reuteri to fibronectin immobilized on glass beads. Zbl Bakt 1992; 277: 519–28.
  • Nagy I, Froman G, Märdh PA. Fibronectin binding of Lactobacillus species isolated from women with and without bacterial vaginosis. J Med Microbiol 1992; 37: 38–42.
  • Aleljung P, Shen W, Rozalska B, Hellman U, Ljungh Wadstrom T. Purification of collagen-binding proteins of Lactobacillus reuteri NCIB 11951. Curr Microbiol 1994; 28: 231–6.
  • Szoke I, Pascu C, Nagy E, Ljung A, Wadström T. Binding of extracellular matrix proteins to the surface of anaerobic bacteria. J Med Microbiol 1996; 45: 338–43.
  • Lantz MS, Rowland RW, Switalski IM. Interactions of Bacteroides gingivalis with fibrinogen. Infect Immun 1986; 54: 654–8.
  • Babu JP, Dean JVV, Pabst MJ. Attachment of Fusobacterium nucleation to fibronectin immobilized on gingival epithelial cells or glass coverslips. J Periodontol 1995; 66: 285–90.
  • Duguid JP, Smith IW, Edmunds PN. Non-flagellar filamen-tous appendages ('fimbriae') and hemagglutinating activity in Bacterium coli. J Pathol Bacteriol 1955; 70: 335–48.
  • Duguid JP, Gillies RR Fimbriae and adhesive properties in dysenteric bacilli. J Pathol Bacteriol 1957; 74: 397–411.
  • Brinton Jr CC. The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in Gram negative bacteria. Transact NY Acad Sci 1965; 27: 1003–54.
  • Duguid JP, Old DC. Adhesive properties of Enterobacteri-aceae. In E. C. Beachey (Ed.), Bacterial adherence, receptors and recognition (pp. 185–217). London: Chapman & Hall, 1980.
  • Heumann W, Marx R. Feinstruktur und Funktion der Fim-brien bei dem stembildenden Bakterium Pseudomonas echi-noides. Arch Mikrobiol 1964; 47: 325–37.
  • Bhattacharjee JVV, Srivastava BS. Mannose-sensitive haemaglutinins id adherence of Vibrio cholerae El Tor to intestine. J Gen Microbiol 1978; 108: 407–10.
  • Firon N, Ofek I, Sharon N. Interaction of mannose-contain-ing oligosaccharides with the fimbrial lectin on Escherichia coli. Biochem Biophys Res Commun 1982; 105: 1426–32.
  • Lindhorst TK, Kieburg C, Krallmann-Wenzel U. Inhibition of the type 1 fimbriae-mediated adhesion of Escherichia coli to erythrocytes by multiantennary alph mannosyl clusters: the effect of multivalency. Glycoconj J 1998; 15: 605–13.
  • Firon N, Ofek I, Sharon N. Carbohydrate specificity of the surface lectins of Escherichia coli, Kkbsiella pneumoniae and Salmonella typhimurium Carbohydr Res 1983; 120: 235–49.
  • Neeser JR, Koellreutter B, Wuersch P. Oligomannoside-type glycopeptides inhibiting adhesion of E. coli strains mediated by type 1 ph: preparation of potent inhibitors of plant glycoproteins. Infect Immun 1986; 52: 428–36.
  • Wold AE, Thorssén M, Hull S, Svanborg Eden C. Attach-ment of Escherichia coli via mannose or Galri 1-4Galfl-con-taining receptors to human colonic epithelial cells. Infect Immun 1988; 56: 2531–7.
  • Adlerberth I, Hanson LA, Svanborg C, Svennerholm AM, Nordgren S, Wold AE Adhesins of Escherichia coli associ-ated with extraintestinal pathogenicity confer binding to colonic epithelial cells. Microbial Pathogenesis 1995; 18: 373–85.
  • Wold AE, Mestecky J, Tomana M, Kobata A, Ohbayashi H, Endo T, Svanborg Eden C. Secretory immunoglobulin A carries oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin. Infect Immun 1990; 58: 3073–7.
  • Baba E, Tsukamoto Y, Fukata T, Sasai K, Arakawa A. Increase of mannose residues, as Salmonella typhimurium-ad-hering factor, on the cecal mucosa of germ-free chickens infected with Eimeria tenella. Am J Vet Res 1993; 54: 1471–5.
  • Pusztai A, Grant G, Spencer RJ, et al. Kidney bean lectin-induced Escherichia coli overgrowth in the small intestine is blocked by GNA, a mannose-specific lectin. J Appl Bacteriol 1993; 75: 360–8.
  • Hendrickson BA, Guo J, Laughlin R, Chen YM, Alverdy JC. Increased type 1 fimbrial expression among commensal Escherichia coli isolates in the murine cecum following catabolic stress. Infect Immun 1999; 67: 745–53.
  • Tullus K, Kiihn I, Orskov I, Orskov F, Möllby R. The importance of P and type 1 fimbriae for the persistence of acherichia coli in the human gut. Epidemiol Infect 1992; 108: 415–21.
  • Wold AE, Caugant DA, Lidin-Janson G, de Man P, Svan-borg C. Resident colonic Escherichia coli strains frequently display uropathogenic characteristics. J Inf Dis 1992; 165: 46–52.
  • Adlerberth I, Svanborg C, Carlsson B, et al. P fimbriae and other adhesins enhance intestinal persistence of Escherichia coli in early infancy. Epidemiol Infect 1998; 121: 599–608.
  • Bloch CA, Omdorff PE. Impaired colonization by and full invasiveness of Ercherichia coli K1 bearing a site-directed mutation in the type 1 pilin gene. Infect Immun 1990; 58: 275–8.
  • Bloch CA, Stocker BA, Omdorff PE A key role for type 1 pili in enterobacterial communicability. Mol Microbiol 1992; 6: 697–701.
  • Herias MV, Midtedt T, Hanson LA, Wold AE. Role of Escherichia coli P fimbriae in intestinal colonization in gnotobiotic rats. Infect Immun 1995; 63: 4781–9.
  • Herias MV, Midtvedt T, Hanson LA, Wold AE. Escherichia coli K5 capsule expression enhances colonization of the large intestine in the gnotobiotic rat. Infect Immun 1997; 65: 531–6.
  • Fr,iman V, Adlerberth I, Connell H, Svanborg C, Hanson LA, Wold AE. Decreased expression of mannose-specific adhesins by Escherichia coli in the colonic microflora of IgA-deficient individuals. Infect Immun 1996; 64: 2794–8.
  • Krogfelt KA, McCormick BA, Burghoff RL, Laux DC, Cohen PS. Expression of Escherichia coli F-18 type 1 fimbriae in the streptomycin-treated mouse large intestine. Infect Immun 1991; 59: 1567–8.
  • Wadolkowski EA, Laux DC, Cohen PS. Colonization of the streptomycin-treated mouse large intestine by a human fae-cal Escherichia coli strain: role of adhesion to mucosal receptors. Infect Immun 1988; 56: 1036–43.
  • Leffler H, Svanborg Eden C. Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells. Infect Immun 1981; 34: 920–9.
  • Roberts JA, Marklund BI, liver D, et al. The Gal(alpha 1-4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci 1994; 91: 11889–93.
  • Korhonen TK, Väisanen-Rhen V, Rhen M, Pere A, Parkki-nen J, Finne J. Escherichia coli fimbriae recognizing silyl galactosides. J Bacteriol 1984; 159: 762–6.
  • Korhonen TK, Valtonen MV, Parkkinen J, et al. Serotypes, hemolysin production and receptor recognition of Es-cherichia coli strains associated with neonatal sepsis and meningitis. Infect Immun 1985; 48: 486–91.
  • Saren A, Virkola R, Hacker J, Korhonen TK. The cellular form of human fibronectin as an adhesion target for the S fimbriae of meningitidis-associated Escherichia coli. Infect Immun 1999; 67: 2671–6.
  • Nowicki B, Hart A, Coyne KE, Lublin DM, Nowicki S. Short consensus repeat-3 domain of recombinant decay-ac-celerating factor is recognized by Escherichia coli recombi-nant Dr adhesin in a model of a cell-cell interaction. J Exp Med 1993; 178: 2115–21.
  • Nowicki B, Labigne A, Moseley S, Hull R, Hull S, Moulds J. The Dr hemagglutinin afimbrial adhesins AFA-I and AFA-III and F1845 fimbriae of uropathogenic and di-arrhoea-associated Escherichia coli belong to a family of hemagglutinins with Dr receptor recognition. Infect Immun 1990; 58: 279–81.
  • Nowicki B, Tmong L, Moulds J, Hull R. Presence of the Dr receptor in normal tissues and its possible role in the patho-genesis of ascending urinary tract infection. Am J Pathol 1988; 133: 1–4.
  • Guzman CA, Pruzzo C, LiPira G, Calegari L. Role of adherence in pathogenesis of Enterococcus faecalis urinary tract infection and endocarditis. Infect Immun 1989; 57: 1834–8.
  • Kreft B, Mane R, Schramm U, Wirth R. Aggreagation substance of Enterococcus faecalis mediates adhesion to cul-tured renal tubular cells. Infect Immun 1992; 60: 25–30.
  • Shorrock PJ, Lambert PA. Binding of fibronectin and albu-min to Enterococcus (Streptococcus) faecalis. Microb Patho-gen 1989; 6: 61–7.
  • Shiono A, Ike Y. Isolation of Enterococcus faecalis isolates that efficiently adhere to human bladder carcinoma T24 cells and inhibition of adhesion by fibronectin and trypsin treat-ment. Infect Immun 1999; 7: 1585–92.
  • Wells CL, Erlandsen SL. Localization of translocating cherichia coli, Proteus mirabilis and Enterococcus faecalis within cecal and colonic tissues of monoassociated mice. Infect Immun 1991; 59: 4693–7.
  • Wells CL, Jechorek RP, Erlandsen SL. Evidence for the translocation of Enterococcus faecalis across the mouse intes-tinal tract. J Infect Dis 1990; 162: 82–90.
  • Conway P. Lactobacilli: fact and fiction, In: Hentges DJ, eds. Regulatory and protective role of the normal mi-croflora. New York: Academic Press, 1988, pp. 263–81.
  • Conway PL, Gorbach SL, Goldin BR. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J Dairy Sci 1987; 70: 1–12.
  • Adlerberth I, Ahrn S, Johansson M-L, Molin G, Hanson LA, Wold AE. A mannose-specific adherence mechanism in I lictobacillus plantarum conferring binding to the human colonic cell line HT-29. Appl Environ Microbiol 1996; 62: 2244–51.
  • Bernet MF, Brassart D, Neeser J-R, Servin AL. Lactobacil-lus acidophilus LA1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by en-terovirulent bacteria. Gut 1994; 35: 483–9.
  • Chauviere G, Coconnier MH, Kerneis S, Fourniat J, Servin AL. Adhesion of human Lactobacillus acidophilus strain LB to human enterocyte-like Caco-2 cells. J Gen Microbiol 1992; 138: 1689–96.
  • Elo S, Saxelin M, Salminen S. Attachment of Lactobacillus casei strain GG to human colon carcinoma cell line Caco-2: comparison with other dairy strains. Lett Appl Microbiol 1991; 13: 154–6.
  • Kleeman EG, Klaenhammer TR. Adherence of Lactobacillus species to human fetal intestinal cells. J Daiy Sci 1982; 65: 2063–9.
  • Fuller R. Epithelial attachment and other factors controlling the colonization of the intestine of the gnotobiotic chicken by lactobacilli. J Appl Bacteriol 1978; 45: 289–95.
  • Pedersen K, Tannock GW. Colonization of the porcine gastrointestinal tract by lactobacilli. Appl Environ Microbiol 1989; 55: 279–83.
  • Kmet V, Callegari ML, Bottazi V, Morelli L. Aggregation-promoting factor in pig intestinal Lactobacillus strains. Lett Appl Microbiol 1995; 21: 351–3.
  • Brook I, Myhal ML. Adherence of Bacteroides fragilis group species. Infect Immun 1991; 59: 742–4.
  • Namavar F, van der Bijl MW, Appelmelk BJ, de Graaf J, MacLaren DM. The role of neuraminidase in haemaggluti-nation and adherence to colon WiDr cells by Bacteroides fragilis. J Med Microbiol 1994; 40: 393–6.
  • Kreutz C. Adherence properties of Bacteroides vulgatus, the preponderant colonic organism of adult humans. Int J Med Microbiol Virol Parasitol Infect Dis 1994; 281: 225–34.
  • Vel WA, Namavar F, Marian A, Verweij van Vught JJ, Pubben AN, MacLaren DM. Hemagglutination of the Bac-teroides fragilis group. J Med Microbiol 1986; 21: 105–7.
  • Blake M, Rotstein OD, Llano M, Girotti MJ, Reid G. Aggregation by fragilis and non-fragilis Bacteroides strains in vitro. J Med Microbiol 1989; 28: 9–14.
  • Brook I, Myhal LA, Dorsey CH. Encapsulation and pilus formation of Bacteroides spp. in normal flora, abscesses and blood. J Infect 1992; 25: 251–7.
  • Eiring P, Manncke B, Gerbracht K, Werner H. Bacteroides fragilis adheres to laminin significantly stronger than Bac-teroides theteiotaomicron and other species of the genus. Int J Med Microbiol Virol Parasitol Infect Dis 1995; 282: 279–86.
  • Bernet MF, Brassart D, Neeser JR, Servin AL. Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interac-tion. Appl Environ Microbiol 1993; 59: 4121–8.
  • Perez PF, Minnaard Y, Disalvo EA, de Antoni GL. Surface properties of bifidobacterial strains of human origin. Appl Environ Microbiol 1998; 64: 21–6.
  • Oro HS, Kolsto AB, Wenneras C, Svennerholm AM. Iden-tification of asialo GM1 as a binding structure for Es-cherichia coli colonization factor antigens. FEMS Microbiol Lett 1990; 72: 289–92.
  • Fujiwara S, Hashiba H, Hirota T, Forstner J. Proteinaceous factor(s) in culture supernatant fluids of bifidobacteria which prevents the binding of enterotoxigenic Escherichia coli to ganliotetraosylceramide. Appl Environ Microbiol 1997; 63: 506–12.
  • Soto GE, Hultgren SJ. Bacterial adhesins: common themes and variations in architecture and assembly. J Bacteriol 1999; 181: 1059–71.
  • Cornelis GR Contact with eukaryotic cells: a new signal triggering bacterial gene expression. Trends Microbiol 1997; 5: 43–5.
  • Nataro JP, Kaper JB. Diarrhoeagenic Eschrichia coli. Clin Microbiol Rev 1998; 11: 142–201.
  • Levine MM. Escherichia coli that cause diarrhoea: entero-toxigenic, enteropathogenic, enteroinvasive, enterohaemor-rhagic, and enteroadherent. J Infect Dis 1987; 155: 377–89.
  • Cassel FJ, Wolf MK. Colonization factors of diarrhoeagenic E. coli and their intestinal receptors. J Indust Microbiol 1995; 15: 214–26.
  • Wilson HK. The microecology of Clostridium difficile. CID 1993; 16: S214–8.
  • Cerquetti M, Pantosti A, Grieco L, Mastrantonio P. Clostridium difficile in healthy adults: evaluation of carriage using an enrichment medium. Microbiol Ecol Health Dis 1989; 2: 215–8.
  • Bartlett JG. Clostridium difficile: clinical considerations. Rev Infect Dis 1990; 12: S243–51.
  • Bothell° SP. Pathogenesis of Clostridium difficile infection. J Antimicrob Chemother 1998; 41 (Suppl.C): 13–9.
  • Freeman J, Wilcox MH. Antibiotic and Clostridium difficile. Microb Infect 1999; 1: 377–84.
  • O'Brien AD, Holmes RK. Protein toxins of Escherichia coli and Salmonella. In: Neidhardt FC, Curtiss III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Bacteria /host interactions in colonisation237 Schaechter M, Umbarger HE, ed. Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. Wash-ington DC: ASM Press, 1996, pp. 2788–802.
  • Gaastra W, Svennerholm. Colonization factors of human enterotoxigenic Escherichia coli (ETEC). Trends Microbiol 1996; 4: 444–452.
  • Wolf MK. Occurrence, distribution, and association of O and H serogroups, colonization factors antigens, and toxins of enterotoxigenicEscherichia coli. Clin Microbiol Rev 1997; 10: 569–84.
  • Jann K, Hoschutsky H. Nature and organization of ad-hesins. Curr Top Microbiol Immunol 1991; 151: 55–85.
  • Kusters JG, Gaastra W. Fimbrial operons and evolution. In: Klemm P, ed. Fimbriae: adhesion, genetic, biogenesis and vaccines. CRC Press. Inc. Boca Raton, Fla, 1994, pp. 179–96.
  • Evans DJ Jr, Evans DG. In: Farthing MJG, GT Keusch, eds. Enteric infection, mechanisms, manifestation and man-agement. Chapman & Hall, 1989, pp. 31–40.
  • Wenneras C, Neeser JR, Svennerholm. Binding of the fibril-lar CS3 adhesin of enterotoxigenic Escherichia coli to rabbit intestinal glycoproteins is competitively prevented by Gal-Nac beta 1-4gal-containing glycoconjugates. Infect Immun 1995; 63: 289–92.
  • Moon HW, Whipp SC, Argenzio RA, Levine MM, Gian-nella RA. Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect Immun 1983; 41: 1340–51.
  • Taylor CJ, Hart A, Batt RM, McDougall C, McLean L. Ultrastructural and biochemical changes in human jejunal mucosa associated with enteropathogenic Escherichia coli infection. J Pediatr Gastrenterol Nutr 1986; 5: 70–3.
  • Polotsky YE, Dragunskaya EM, Selivertova VG, et al. Pathogenic effect of enterotoxigenic Escherichia coli and Escherichia coli causing infantile diarrhoea. Acta Microbiol Acad Sci Hung 1977; 24: 221–36.
  • Donnenberg MS, Kaper JB. Enteropathogenic Escherichia coli. Infect Immun 1992; 60: 3953–61.
  • Donnenberg MS, Kaper JB, Finlay BB. Interactions between enteropathogenic Escherichia coli and host epithelial cells. Trend Microbiol 1997; 5: 109–14.
  • Goosney DL, Knoechel DG, Finlay BB. Enteropathogenic E. coli, Salmonella, and Shigella: masters of host cell cy-toskeletan exploitation. Emerging Infect Dis 1999; 5: 216–23.
  • Giron JA, Ho AS, Schoolnik GK. An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 1991; 254: 710–3.
  • Hicks S, Frankel G, Kaper J, Dougan G, Philips AD. Role of intimin and bundle-forming pili in enteropathogenic cherichia coli adhesion to pediatric intestinal tissue in vivo. Infect Immun 1998; 66: 1570–8.
  • Kenny B, Finlay BB. Protein secretion by enteropathogenic Escherichia coli is essential for transducing signals to epithe-lial cell. Proc Natl Acad Sci USA 1995; 92: 7991–5.
  • Kenny B, De Vinney R, Stein M, Reinscheid DJ, Frey EA, Finlay BB. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 1997; 91: 511–20.
  • Frankel G, Lider O, Hershkoviz R, et al. The cell-binding domain of intimins from enteropathogenic Escherichia coli binds to integrins. J Biol Chem 1996; 271: 20359–64.
  • McDaniel TK, Kaper JB. A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol Microbiol 1997; 23: 399–407.
  • Scaletsky IC, Milani SR, Trabulsi LR, Travassos LR. Isola-tion and characterization of the localized adherence factor of enteropathogenic Escherichia coli. Infect Immun 1988; 56: 2979–83.
  • Cravioto A, Tello A, Villafan H, Ruiz J, del Vedovo S, Neeser JR. Inhibition of localized adhesion of enteropatho-genic Escherichia coli to Hep-2 cells by immunoglobulin and oligosaccharide fractions of human colostrum and breast milk. J Infect Dis 1991; 163: 1247–55.
  • Idota T, Kawakami H. Inhibitory effects of milk gan-gliosides on the adhesion of Escherichia coli to human intestinal carcinoma cells. Biosci Biotechnol Biochem 1995; 59: 69–72.
  • Jagannatha HM, Sharma UK, Ramaseshan T, Surolia A, Balganesh TS. Identification of carbohydrates structures as receptors for localized adherent enteropathogenic cherichia coli. Microb Pathogenesis 1991; 11: 259–68.
  • Vanmaele RP, Finlayson MC, Armstrong GD. Effect of enteropathogenic Escherichia coli on adherent properties of Chinese hamster ovary cells. Infect Immun 1995; 63: 191–8.
  • Vanmaele RP, Heerze LD, Armstrong GD. Role of lactosyl glycan sequences in inhibiting enteropathogenic Escherichia coli attachment. Infect Immun 1999; 67: 3302–7.
  • Kaper JB, Gansheroff LJ, Wachtel MR, O'Brien AD. In-timin-mediated adherence of Shiga toxin-producing Es-cherichia coli and attaching-and-effacing pathogens. In: Kaper BJ, O'Brien AD, eds. Escherichia coli 0157:H7 and Other Shiga Toxin-Producing Strains. Washington DC: ASM Press, 1998, pp. 148–153.
  • Nataro JP, Kaper JB, Robins Browne R, Prado V, Vial P, Levine MM. Patterns of adherence of diarrhoeagenic cherichia coli to Hep-2 cells. J Pediatric Infect Dis J 1987; 6: 829–31.
  • Wanke CA, Cronan S, Goss C, Chadee K, Guerrant RL. Characterization of binding of Escherichia coli strains which are enteropathogens to small-bowel mucin. Infect Immun 1990; 58: 794–800.
  • Nataro JP, Yikang D, Giron JA, Savarino SJ, Kothary MH, Hall R. Aggregative adherence fimbria I expression in en-teroaggregative Escherichia coli requires two unlinked plas-mid regions. Infect Immun 1993; 61: 1126–31.
  • Czeczulin JR, Balepur S, Hicks S, et al. Aggregative adher-ence fimbria II, a second fimbrial antigen mediating aggrega-tive adherence in enteroaggregative Escherichia coli. Infect Immun 1997; 65: 4135–45.
  • Waldir PE Jr, Czeczulin JR, Henderson IR, Trabulsi LR, Nataro JP. Organization of biogenesis genes for aggregative adherence fimbria II defines a virulence gene cluster in enteroaggregative Escherichia coli. J Bacteriol 1999; 181: 1779–85.
  • Parsot C, Sansonetti PJ. Invasion and the pathogenesis of Shigella infections. Curr Top Microbiol 1996; 209: 25–42.
  • Sansonetti PJ. Molecular and cellular biology of Shigella flexneri invasiveness: from cell assay system to shigellosi. Curr Top Microbiol Immunol 1992; 180: 1–19.
  • Small PLC, Falkow S. Identification of regions on a 230-kilobase plasmid from enteroinvasive Escherichia coli are required for entry into HEp-2 cells. Infect Immun 1988; 56: 225–9.
  • Cookson ST, Nataro JP. Characterization of Hep-2 cell projection formation induced by diffusely adherent Es-cherichia coli. Microb Pathogenesis 1996; 21: 421–34.
  • Benz I, Schmidt MA. Isolation and serological characteriza-tion of AIDA-I, the adhesin mediating the diffuse adherence phenotype of the diarrhoea-associated Escherichia coli strain 2787 (0126:H27). Infect Immun 1992; 60: 13–8.
  • Bongaerts GPA, Lyerly DM. Role of bacterial metabolism and physiology in the pathogenesis of Clostridium difficile disease. Microb Pathogenesis 1997; 22: 253–6.
  • Mastrantonio P, Pantosti A, Cerqueti M, Fiorentini C, Donelli G. Clostridium difficile: an update on virulence mechanisms. Anaerobe 1996; 2: 337–43.
  • Pothoulakis C. Pathogenesis of Clostridium difficile-associ-ated diarrhoea. Eur J Gastroenterol Hepatol 1996; 8: 1041–7.
  • Sears CL, Kaper JB. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiological Reviews 1996; 60: 167–215.
  • Bothell° SP, Davies HA, Barclay FE. Detection of fimbriae among strains of Clostridium difficile. FEMS Microbiol Let-ters 1988; 49: 65–7.
  • Krishna MM, Powel NBL, Bothell° SP. Cell surface proper-ties of Clostriditan difficile: haemoagglutination, relative hy-drophobicity and charge. J Med Microbiol 1996; 44: 115–23.
  • Bothell° SP. Clostridium difficile and its toxins in the gas-trointestinal tract in health and disease. Res Clin Forums 1979; 1: 33–5.
  • Bothell° SP, Welch AR, Barclay FE, Davies HA Mucosal association by Clostridium difficile in the hamster gas-trointestinal tract. J Med Microbiol 1988; 25: 191–6.
  • Eveillard M, Fourel V, Barc MC, et al. Identification and characterization of adhesive factors of Clostridium difficile involved in adhesion to human colonic enterocyte-like Caco-2 and micus-secreting HT29 cells in culture. Mol Microbiol 1993; 7: 371–81.
  • Gomez-Trevino M, Boureau H, Karjalainen T, Bourlioux P. Clostridium difficile adherence to mucus: results of an in vivo and ex vivo assay. Microb Ecol Health Dis 1996; 9: 329–34.
  • Naaber P, Lehto E, Salminen S, Mikelsaar M. Inhibition of adhesion of Clostridium difficile to Caco-2 cells. FEMS Immunol Med Microbiol 1996; 14: 205–9.
  • Cerquetti M, Conti F, Spigaglia P, Mastrantonio P. Adher-ence of Clostridium difficile c253 to Caco-2 cells. 2nd World Congress on Anaerobic Bacteria and Infections. Nice, Octo-ber 3–6, 1998. Abstract book p. 55.
  • Cerquetti M, Pantosti A, Stefanelli P, Mastrantonio P. Purification and characterization of an immunodominant 36 kDa antigen present on cell surface of Clostridium difficile. Microb Pathogenesis 1992; 13: 271–9.
  • Takumi K, Koga T, Oka T, Endo Y. Self-assembly, adhe-sion, and chemical properties of tetragonarly arrayed S-layer proteins of Clostridium. J Gen Appl Microbiol 1991; 37: 455–65.
  • Johansson ML, Molin G, Jeppsson B, Nobaek S, Ahrné S, Bengmark S. Administration of different Lactobacillus strains in fermented oatmeal soup: In vivo colonization of human intestinal mucosa and effect on the indigenous flora. Appl Environ Microbiol 1993; 59: 15–20.
  • Licht TR, Krogfelt KA, Cohen PS, Poulsen LK, Urbance J, Molin S. Role of lipopolysaccharide in colonization of the mouse intestine by Salmonella typhimurium studied by in situ hybridization. Infect Immun 1996; 64: 3811–7.
  • Cone RA. Mucus. In: Ogra PL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, eds. Mucosal Im-munology. San Diego: Academic Press, 1999, pp. 43–64.
  • Hoskins LC, Agustines M, Mckee WB, Boulding ET, Kriaris M, Niedermeyer G. Mucin degradation in human colon ecosystems. Isolation and properties of faecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J Clin Invest 1985; 75: 944–53.
  • Midtvedt T, Carlstedt-Duke B, Höverstad T, Midtvedt A C, Norin KE, Saxerholt H. Establishment of a biochemically active intestinal ecosystem in ex-germfree rats. Appl Environ Microbiol 1987; 53: 2866–71.
  • Miller RS, Hoskins LC. Mucin degradation in human colon ecosystems. Faecal population densities of mucin-degrading bacteria estimated by a "most probable number" method. Gastroenterology 1981; 81: 759–65.
  • Hoskins LC. Mucin degradation by enteric bacteria: ecologi-cal aspects and implications for bacterial attachment to gut mucosa. In: Boedeker EC, ed. Attachment of organisms to the gut mucosa. 1984; 2: 51–67.
  • Falk P, Hoskins LC, Larson G. Bacteria of the human intestinal microbiota produce glycosidases specific for lacto-series glycosphingolipids. J Biochem 1990; 108: 466–74.
  • Corfield AP, Wagner SA, Clamp JR, Kriaris MS, Hoskins LC. Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminatelyase, arylesterase, and glycosulfatase activities by strains of faecal bacteria. Infect Immun 1992; 60: 3971–8.
  • Mantle M. Role antiadhérent du mucus intestinal: mécanis-mes et physiopathologie. Mucus Dialogue 1994; 2: 1–5.
  • Macfarlane GT, Hay S, Gibson GR. Influence of mucin on glycosidase; protease and arylamidase activities of human gut bacteria grown in a 3-stage continuous culture system. J Appl Bacteriol 1989; 66: 407–17.
  • Umesaki Y, Sakata T, Yajima T. Abrupt induction of GDP-fucose:asialo GM1 fucosyltransferase in the small in-testine after conventionalization of germ-free mice. Biochem Biophys Res Commun 1982; 105: 439–43.
  • Umesaki Y, Okada Y, Matsumoto S, Imaoka A, Setoyama H. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC Class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol Immunol 1995; 39: 555–62.
  • Bry L, Falk PG, Midtvedt T, Gordon JI. A model of host-microbial interactions in an open mammalian ecosys-tem. Science 1996; 273: 1380–3.
  • Hooper LV, Bry L, Falk PG, Gordon JI. Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. BioEssays 1998; 20: 336–43.
  • Valentine PJ, Gherardini FC, Salyers AA. A Bacteroides ovatus chromosomal locus which contains an ri-galactosidase gene may be important for colonization of the gastrointesti-nal tract. Appl Environ Micobiol 1991; 57: 1615–23.
  • Rafay AM, Homer KA, Beighton D. Effect of mucin and glucose on proteolytic and glycosidic activities of Streptococ-cus oralis. J Med Microbiol 1996; 44: 409–17.
  • Cheng Q, Hwa V, Salyers AA. A locus that contributes to colonization of the intestinal tract by Bacteroides thetaio-taomicron contains a single regulatory gene (chuR) that links two polysaccaride utilization pathways. J Bacteriol 1992; 174: 7185–93.
  • Cheng Q, Salyers AA. Use of suppressor analysis to find genes involved in the colonization deficiency of a Bacteroides thetaiotaomicron mutant unable to grow on the host-derived mucopolysaccharides chondroitin sulfate and heparin. Appl Environ Microbiol 1995; 61: 734–40.
  • Seddon SV, Hemingway I, Bothell° SP. Hydrolytic enzyme production by Clostridium difficile and its relationship to toxin production and virulence in the hamster model. J Med Microbiol 1990; 31: 169–74.
  • Boureau H, Deere D, Culler JP, Guichet C, Bourlioux P. Identification of a Clostridium cocleatum strain involved in an anti-Clostridium difficile barrier effect and determination of its mucin-degrading enzymes. Res Microbiol 1993; 144: 405–10.
  • Karjalainen T, Ramaldes M, Leblond F, Boureau H, Bourlioux P. The cloning of sialidase genes from Clostridium indolis and Clostridium cocleatum. Clin Infect Dis 1997; 25: S156–7.
  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molec-ular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 1998; 62: 597–635.
  • Maeda H. Role of microbial proteases in pathogenesis. Microbiol Immunol 1996; 40: 685–99.
  • Travis J, Potempa J, Maeda H. Are bacterial proteinases pathogenic factors? Trends Microbiol 1995; 3: 405–7.
  • Tjwan Tan PS, Poolman B, Konings W. Proteolytic enzymes of Lactococcus lactis. J Dairy Res 1993; 60: 269–86.
  • Juillard V, Laan H, Kunji ERS, Jeronimus-Stratingh CM, Bruins AP, Konings W. The extracellular PI-type proteinase of Lactococcus laais hydrolyzes casein into more than one hundred different oligopeptides. J Bacteriol 1995; 177: 3472–8.
  • Macfarlane GT, Cummings JH, Allison C. Protein degrada-tion by human intestinal bacteria. J Gen Microbiol 1986; 132: 1647–56.
  • Macfarlane GT, Allison C, Gibson SA, Cummings J. Contri-bution of the microflora to proteolysis in the human large intestine. J Appl Bacteriol 1988; 64: 37–46.
  • Lomholt H, Kilian M. Distinct antigenic and genetic proper-ties of the immunoglobulin Al protease produced by Haemophilus influenzae biogroup aegyptius with brazilian purpuric fever in Brazil. Infect Immun 1995; 63: 4389–94.
  • Lomholt H, Poulsen K, Kilian M. Antigenic and genetic heterogeneity among Haemophilus influenzae and Neisseria IgAl proteases. In J. Mestecky et al. Ed. Advances in Mucosal Immunology, New-York. Plenum Press 1995: 599–603.
  • Proctor M, Manning PJ. Production of Immunoglobulin A protease by Streptococcus pneumoniae from animals. Infect Immun 1990; 58: 2733–7.
  • Pohlner J, Halter R, Beyreuther K, Meyer TF. Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 1987; 325: 458–62.
  • Kilian M, Mestecky J, Russell MW. Defense mechanisms involving Fc dependent functions of Immunoglobulin A and their subversion by bacterial Immunoglobulin A proteases. Microbiol Rev 1988; 52: 296–303.
  • Kilian M, Reinholdt J, Lomholt H, Poulsen K, Frandsen EVG. Biological significance of IgAl proteases in bacterial colonization and pathogenesis: critical evaluation of experi-mental evidence. APMIS 1996; 104: 321–38.
  • Kontani M, Ono H, Shibata H, et al. Cysteine protease of Porphyromonas gingivalis 381 enhances binding of fimbriae to cultured human fibroblasts and matrix proteins. Infect Immun 1996; 64: 756–62.
  • Tokuda M, Duncan M, Cho MI, Kuramitsu HK. Role of Porphyromonas gingivalis protease activity in colonization of oral surfaces. Infect Immun 1996; 64: 4067–73.
  • Tokuda M, Karunakaran T, Duncan M, Hamada N, Kuramitsu H. Role of Arg.-Gingipain A in virulence of Porphyromonas gingivalis. Infect Immun 1998; 66: 1159–66.
  • Schiavo G, Benfenati F, Poulain B, et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 1992; 359: 832–5.
  • Hara-Kudo Y, Yamakawa Y, Kumagai S. Purification and some properties of Clostridium sporogenes haemorrhagic toxin. Biochem Biophys Res Commun 1996; 227: 413–8.
  • Jin F, Matsushita O, Katayama S, et al. Purification, charac-terization and primary structure of Clostridium perfringens Lambda-toxin a thennolysin-like metalloprotease. Infect Im-mun 1996; 64: 230–7.
  • Jung CM, Matsushita O, Katayama S, Minami J, Ohhira I, Okabe A. Expression of the colH gene encoding Clostri-dium histolyticum collagenase in Bacillus subtilis and its application to enzyme purification. Microbiol Immuno11996; 40: 923–9.
  • Poilane I, Karjalainen T, Barc MC, Bourlioux P, Collignon A. Protease activity of Clostridium difficile strains. Can J Microbiol 1998; 44: 157–61.