1,053
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Mechanisms of Colonisation and Colonisation Resistance of the Digestive Tract Part 2: Bacteria/Bacteria Interactions

Pages 240-246 | Published online: 11 Jul 2009

References

  • Savage DC. Factors involved in colonization of the gut epithelial surface. Am J Clin Nutr 1978; 31 (Suppl 10): S131–5.
  • Dubos F, Pelissier JP, Andrieux C, Ducluzeau R, Raibaud P. Inhibitory effect of a copper-dipeptide complex on the estab-lishment of a Clostridium perenne strain in the intestinal tract of gnotobiotic mice. Appl Environ Microbiol 1985; 50: 1258–61.
  • Ducluzeau R, Raibaud P, Dubos F, Clara A, Lhuillery C. Remanent effect of some dietary regimens on the establish-ment of two Clostridium strains in the digestive tract of gnotobiotic mice. Am J Clin Nutr 1981; 34: 520–6.
  • Morvan B, Bonnemoy F, Fonty G, Gouet P. Quantitative determination of H2-utilizing acetogenic and sulfate- reducing bacteria and methanogenic archaea from digestive tract of different mammals. Curr Microbiol 1996; 32: 129–33.
  • Freter R, Brickner H, Botney M, Cleven D, Aranki A. Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora. Infect Immun 1983; 39: 676–85.
  • Freter R, Brickner H, Fekete J, Vickerman MM, Carey KE. Survival and implantation of Escherichia coli in the intestinal tract. Infect Immun 1983; 39: 686–703.
  • Freter R, Stauffer E, Cleven D, Holdeman LV, Moore WE. Continuous-flow cultures as in vitro models of the ecology of large intestinal flora. Infect Immun 1983; 39: 666–75.
  • Yurdusev N, Nicolas JL, Ladire M, Ducluzeau R, Raibaud P. Antagonistic effect exerted by three strictly anaerobic strains against various strains of Clostridium perfringens in gnotobi-otic rodent intestines. Can J Microbiol 1987; 33: 226–31.
  • Yurdusev N, Ladire M, Ducluzeau R, Raibaud P. Antago-nism exerted by an association of a Bacteroides thetaiotaomi-cron strain and a Fusobacterium necrogenes strain against Clostridium perfringens in gnotobiotic mice and in fecal suspensions incubated in vitro. Infect Immun 1989; 57: 724–31.
  • Dore J, Sghir A, Hannequart-Gramet G, Corthier G, Pochart P. Design and evaluation of a 16S rRNA-targeted oligonucle-°tide probe for specific detection and quantitation of human faecal Bacteroides populations. Syst Appl Microbiol 1998; 21: 65–71.
  • Moore WE, Holdeman LV. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 1974; 27: 961–79.
  • Salyers AA, Guthrie EP. A deletion in the chromosome of Bacteroides thetaiotaomicron that abolishes production of chondroitinase II does not affect survival of the organism in gastrointestinal tracts of exgermfree mice. Appl Environ Mi-crobiol 1988; 54: 1964–9.
  • Cheng Q, Hwa V, Salyers AA. A locus that contributes to colonization of the intestinal tract by Bacteroides thetaio-taomicron contains a single regulatory gene (chuR) that links two polysaccharide utilization pathways. J Bacteriol 1992; 174: 7185–93.
  • Cheng Q, Yu MC, Reeves AR, Salyers AA. Identification and characterization of a Bacteroides gene, csuF, which encodes an outer membrane protein that is essential for growth on chondroitin sulfate. J Bacteriol 1995; 177: 3721–7.
  • Valentine PJ, Gherardini FC, Salyers AA. A Bacteroides ovatus chromosomal locus which contains an alpha-galactosi-dase gene may be important for colonization of the gas-trointestinal tract. Appl Environ Microbiol 1991; 57: 1615–23.
  • Sweeney NJ, Klemm P, McCormick BA, Moller-Nielsen E, Utley M, Schembri MA, et al. The Escherichia coli K-12 gntP gene allows E. coli F-18 to occupy a distinct nutritional niche in the streptomycin-treated mouse large intestine. Infect Im-mun 1996; 64: 3497–503.
  • Bouhnik Y, Flourie B, D'Agay-Abensour L, Pochart P, Gramet G, Durand M, et al. Administration of transgalacto-oligosaccharides increases fecal bifidobacteria and modifies colonic fermentation metabolism in healthy humans. J Nutr 1997; 127: 444–8.
  • Buckenhilskes HJ. Selection criteria for lactic acid bacteria to be used as starter cultures for various food commodities. FEMS Microbiol Reviews 1993; 12: 253–72.
  • Vandenbergh PA. Lactic acid bacteria, their metabolic prod-ucts and interference with microbial growth. FEMS Microbiol Rev 1993; 12: 221–38.
  • Johansson ML, Molin G, Jeppsson B, Nobaek S, Ahme S, Bengmark S. Administration of different Lactobacillus strains in fermented oatmeal soup: in vivo colonization of human intestinal mucosa and effect on the indigenous flora. Appl Environ Microbiol 1993; 59: 15–20.
  • Marteau P, Rambaud JC. Potential of using lactic acid bacte-ria for therapy and immunomodulation in man. FEMS Mi-crobiol Rev 1993; 12: 207–20.
  • Oksanen PJ, Salminen S, Saxelin M, Hamalainen P, Ihantola-Vormisto A, Muurasniemi-Isoviita L, et al. Prevention of travellers' diarrhoea by Lactobacillus GG. Ann Med 1990; 22: 53–6.
  • Siitonen S, Vapaatalo H, Salminen S, Gordin A, Saxelin M, Wikberg R, et al. Effect of Lactobacillus GG yoghurt in prevention of antibiotic associated diarrhoea. Ann Med 1990; 22: 57–9.
  • Chan RC, Reid G, Irvin RT, Bruce AW, Costerton JW. Competitive exclusion of uropathogens from human uroep-ithelial cells by Lactobacillus whole cells and cell wall frag-ments. Infect Immun 1985; 47: 84–9.
  • Reid G, Chan RC, Bruce AW, Costerton JW. Prevention of urinary tract infection in rats with an indigenous Lactobacillus casei strain. Infect Immun 1985; 49: 320–4.
  • Chauviere G, Coconnier MH, Kemeis S, Darfeuille-Michaud A, Joly B, Servin AL. Competitive exclusion of diarrheagenic Escherichia coli (ETEC) from human enterocyte-like Caco-2 cells by heat-killed Lactobacillus. FEMS Microbiol Lett 1992; 70: 213–7.
  • Coconnier MH, Bernet MF, Chauviere G, Servin AL. Adher-ing heat-killed human Lactobacillus acidophilus, strain LB, inhibits the process of pathogenicity of diarrhoeagenic bacte-ria in cultured human intestinal cells. J Diarrhoeal Dis Res 1993; 11: 235–42.
  • Coconnier MH, Bernet MF, Kemeis S, Chauviere G, Four-that J, Servin AL. Inhibition of adhesion of enteroinvasive pathogens to human intestinal Caco-2 cells by Lactobacillus acidophilus strain LB decreases bacterial invasion. FEMS Microbiol Lett 1993; 110: 299–305.
  • Bernet MF, Brassart D, Neeser JR, Servin AL. Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enteroviru-lent bacteria. Gut 1994; 35: 483–9.
  • Bernet MF, Brassart D, Neeser JR, Servin AL. Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interac-tions. Appl Environ Microbiol 1993; 59: 4121–8.
  • Artwohl JE, Savage DC. Determinants in microbial coloniza-tion of the murine gastrointestinal tract: pH, temperature, and energy-yielding metabolism of Torulopsis pintolopesii. Appl Environ Microbiol 1979; 37: 697–703.
  • Johnson E, Conway PL. Probiotics in pigs. In: Fuller M, ed. Probiotics. New York: Chapman and Hall 1992: 260–316.
  • Vervaeke IJ, Van Nevel CJ, Decuypere JA, Van Assche PF. A comparison of two methods for obtaining anaerobic counts in different segments of the gastro-intestinal tract of piglets. J Appl Bacteriol 1973; 36: 397–405.
  • Bullen CL, Tearle PV, Stewart MG. The effect of 'humanised' milks and supplemented breast feeding on the faecal flora of infants. J Med Microbiol 1977; 10: 403–13.
  • Rubin HE, Nerad T, Vaughan F. Lactate acid inhibition of Salmonella typhimurium in yogurt. J Dairy Sci 1982; 65: 197–203.
  • Tannock GW. Control of gastrointestinal pathogens by nor-mal flora. In: Klug MJ, Reddy CA, eds. Current Perspectives in Microbial Ecology. Washington DC: American Society for Microbiology, 1984: 374–82.
  • Alderete JF, Robertson DC. Nutrition and enterotoxin syn-thesis by enterotoxigenic strains of Escherichia coli: defined medium for production of heat-stable enterotoxin. Infect Im-mun 1977; 15: 781–8.
  • Callahan LTd, Richardson SH. Biochemistry of Vibrio cholerae virulence. 3. Nutritional requirements for toxin pro-duction and the effects of pH on toxin elaboration in chemi-cally defined media. Infect Immun 1973; 7: 567–72.
  • Muralidhara KS, Sheggeby GG, Elliker PR, England DC, Sandine WE. Effect of feeding lactobacilli on the coliform and Lactobacillus flora of the intestinal tissue and feces from piglets. J Food Protect 1977; 40: 288–95.
  • Bernet-Camard MF, Lievin V, Brassart D, Neeser JR, Servin AL, Hudault S. The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial substance(s) ac-tive in vitro and in vivo. Appl Environ Microbiol 1997; 63: 2747–53.
  • Clements ML, Levine MM, Black RE, Robins-Browne RM, Cisneros LA, Drusano GL, et al. Lactobacillus prophylaxis for diarrhea due to enterotoxigenic Escherichia coli. Antimi-crob Agents Chemother 1981; 20: 104–8.
  • Coconnier MH, Lievin V, Hemery E, Servin AL. Antagonistic activity against Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB. Appl Environ Microbiol 1998; 64: 4573–80.
  • Gotz V, Romankiewicz JA, Moss J, Murray HW. Prophylaxis against ampicillin-associated diarrhea with a lactobacillus preparation. Am J Hosp Pharm 1979; 36: 754–7.
  • Banina A, Vukasinovic M, Brankovic S, Fira D, Kojic M, Topisirovic L. Characterization of natural isolate Lactobacil-lus acidophilus BGRA43 useful for acidophilus milk produc-tion. J Appl Microbiol 1998; 84: 593–9.
  • Fang W, Shi M, Huang L, Chen J, Wang Y. Antagonism of lactic acid bacteria towards Staphylococcus aureus and Es-cherichia coli on agar plates and in milk. Vet Res 1996; 27: 3–12.
  • Djouzi Z, Andrieux C, Degivry MC, Bouley C, Szylit O. The association of yogurt starters with Lactobacillus casei DN 114.001 in fermented milk alters the composition and metabolism of intestinal microflora in germ-free rats and in human flora-associated rats. J Nutr 1997; 127: 2260–6.
  • Aiba Y, Suzuki N, Kabir AM, Takagi A, Koga Y. Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model. Am J Gastroenterol 1998; 93: 2097–101.
  • Breidt F, Fleming HP. Modeling of the competitive growth of Listeria nzonocytogenes and Lactococcus lactis in vegetable broth. Appl Environ Microbiol 1998; 64: 3159–65.
  • Nykanen A, Vesanen S, Kallio H. Synergistic antimicrobial effect of nisin whey permeate and lactic acid on microbes isolated from fish. Lett Appl Microbiol 1998; 27: 345–8.
  • Park HY, Bae EA, Han MJ, Choi EC, Kim DH. Inhibitory effects of Bifidobacterium spp. isolated from a healthy Korean on harmful enzymes of human intestinal microflora. Arch Pharm Res 1998; 21: 54–61.
  • Catala I, Butel MJ, Bensaada M, Popot F, Tessedre AC, Rimbault A, et al. Oligofructose contributes to the protective role of bifidobacteria in experimental necrotising enterocolitis in quails. J Med Microbiol 1999; 48: 89–94.
  • Campbell JM, Fahey GC, Jr, Wolf BW. Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. J Nutr 1997; 127: 130–6.
  • Bohnhoff M, Miller CP, Martin WR. Resistance of the mouse's intestinal tract to experimental Salmonella infection. I. Factors which interfere with the initiation of infection by oral inoculation. J Exp Med 1964; 120: 805–16.
  • Bohnhoff M, Miller CP, Martin WR. Resistance of the mouse's intestinal tract to experimental Salmonella infection. II. Factors responsible for its loss following streptomycin treatment. J Exp Med 1964; 120: 817–28.
  • Hentges DJ. Role of the intestinal microflora in host defense against infection. In: Hentges DJ, ed. Human Intestinal Mi-croflora in Health and Disease. New York: Academic Press, 1983: 311–31.
  • Bergheim O, Hanszen AH, Pincussen L, Weiss E. Relation of volatile fatty acids and hydrogen sulphide to the intestinal flora. J Infect Dis 1941; 69: 155–66.
  • Ozawa K, Yabu-uchi K, Yamanaka K, Yamashita Y, Nomura S, Oku I. Effect of Streptococcus faecalis BIO-4R on intestinal flora of weanling piglets and calves. Appl Environ Microbiol 1983; 45: 1513–8.
  • Smith HW, Jones JET. Observations on the alimentary tract and its bacterial flora in healthy and diseased pigs. J Pathol Bacteriol 1963; 86: 387–412.
  • Ushe TC, Nagy B. Inhibition of small intestinal colonization of enterotoxigenic Escherichia coli by streptococcus faecium M74 in pigs. Zentralbl Bakteriol Mikrobiol Hyg 1985; 181: 374–82.
  • Koopman JP, Janssen FG, van Druten JA. Oxidation-reduc-tion potentials in the cecal contents of rats and mice. Proc Soc Exp Biol Med 1975; 149: 995–9.
  • Grutte FK, Horn R, Haenel H. Ernahrung und biochemis-chmikrookologische voorgange in enddarm von sauglingen. Z Kinderheilkd 1965; 93: 28–39.
  • Meynell GG. Antibacterial mechanisms in the mouse gut. II. The role of Eh and volatile fatty acids in the normal gut. Br J Exp Pathol 1963; 44: 209–19.
  • McGroarty JA, Reid G. Detection of a Lactobacillus sub-stance that inhibits Escherichia coli. Can J Microbiol 1988; 34: 974–8.
  • Silva M, Jacobus NV, Deneke C, Gorbach SL. Antimicrobial substance from a human Lactobacillus strain. Antimicrob Agents Chemother 1987; 31: 1231–3.
  • Talarico TL, Casas IA, Chung TC, Dobrogosz WJ. Produc-tion and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob Agents Chemother 1988; 32: 1854–8.
  • Talarico TL, Dobrogosz WJ. Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob Agents Chemother 1989; 33: 674–9.
  • Vescovo M, Scolari GL, Caravaggi L, Bottazzi V. Antimicro-bial compounds from Lactobacillus casei and Lactobacillus helveticus. New Microbiol 1993; 16: 171–5.
  • Lehto EM, Salminen SJ. Inhibition of Salmonella ty-phimurium adhesion to Caco-2 cell cultures by Lactobacillus strain GG spent culture supemate: only a pH effect? FEMS Immunol Med Microbiol 1997; 18: 125–32.
  • Hudault S, Lievin V, Bernet-Camard MF, Servin AL. Antag-onistic activity exerted in vitro and in vivo by Lactobacillus casei (strain GG) against Salmonella typhimurium C5 infec-tion. Appl Environ Microbiol 1997; 63: 513–8.
  • Jack RW, Tagg JR, Ray B. Bacteiiocins of gram-positive bacteria. Microbiol Rev 1995; 59: 171–200.
  • Klaenhammer TR. Genetics of bacteriocins produced by lac-tic acid bacteria. FEMS Microbiol Rev 1993; 12: 39–85.
  • Kalmokoff ML, Bartlett F, Teather RM. Are ruminal bacte-ria armed with bacteriocins? J Dairy Sci 1996; 79: 2297–306.
  • Ramare F, Nicoll J, Dabard J, Coning T, Ladire M, Gueugneau AM, et al. Trypsin-dependent production of an antibacterial substance by a human Peptostreptococcus strain in gnotobiotic rats and in vitro. Appl Environ Microbiol 1993; 59: 2876–83.
  • Kalmokoff ML, Teather RM. Isolation and characterization of a bacteriocin (Butyrivibriocin AR10) from the ruminal anaerobe Butyrivibrio fibrisolvens AR10: evidence in support of the widespread occurrence of bacteriocin-like activity among ruminal isolates of B. fibrisolvens. Appl Environ Mi-crobiol 1997; 63: 394–402.
  • Riley MA, Gordon DM. The ecological role of bacteriocins in bacterial competition. Trends Microbiol 1999; 7: 129–33.
  • Riley MA. Molecular mechanisms of bacteriocin evolution. Annu Rev Genet 1998; 32: 255–78.
  • Corthier G, Dubos F, Raibaud P. Modulation of cytotoxin production by Clostridium difficile in the intestinal tracts of gnotobiotic mice inoculated with various human intestinal bacteria. Appl Environ Microbiol 1985; 49: 250–2.
  • Swift S, Vaughan EF, de Vos WM. Quorum sensing within the gut ecosystem. Microb Ecol Health Dis 2000 (Suppl 2): 81–92.