1,623
Views
13
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Butyrate and propionate production from D-mannitol in the large intestine of pig and rat

, , , , , , , , , , & show all
Pages 169-176 | Received 15 Feb 2005, Published online: 11 Jul 2009

References

  • Nakano K, Mizuno T, Sowa Y, Orita T, Yoshino T, Okuyama Y, et al. Butyrate activates the WAF1/Cip1 gene promoter through Sp1 sites in a p53-negative human colon cancer cell line. J Biol Chem 1997; 272: 22199–206
  • Ruemmele FM, Schwartz S, Seidman EG, Dionne S, Levy E, Lentze MJ. Butyrate-induced Caco-2 cell apoptosis is mediated via the mitochondrial pathway. Gut 2003; 52: 94–100
  • Kameue C, Tsukahara T, Yamada K, Koyama H, Iwasaki Y, Nakayama K, et al. Dietary sodium gluconate protects rats from large-bowel cancer by stimulating butyrate production. J Nutr 2004; 134: 940–4
  • Bernier JJ, Pascal G. Valeur enérgetique des polyols (sucres-alcools). Med Nut 1990; 24: 221–38
  • Morishita Y. The effect of dietary mannitol on the caecal microflora and short-chain fatty acids in rats. Lett Appl Microbiol 1994; 18: 27–9
  • Holdeman LV, Cato EP, Moore WEC. Anaerobe laboratory manual4th edn. Virginia Polytechnic Institute and State University, Blacksburg, VA 1977
  • Tsukahara T, Koyama H, Okada M, Ushida K. Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrate-producing bacteria. J Nutr 2002; 132: 2229–34
  • Ushida K, Hoshi S, Ajisaka K. 13C-NMR studies on lactate metabolism in a porcine gut microbial ecosystem. Microb Ecol Health Dis 2002; 14: 241–6
  • Kinouchi T, Koizumi K, Kuwata T, Yajima T. Milk-borne insulin with trypsin inhibitor in milk induces pancreatic amylase development at the onset of weaning in rats. J Pediatr Gastroenterol Nutr 2000; 30: 515–21
  • Hoshi S, Sakata T, Mikuni K, Hashimoto H, Kimura S. Galactosylsucrose and xylosylfructoside alter digestive tract size and concentrations of cecal organic acids in rats fed diets containing cholesterol and cholic acid. J Nutr 1994; 124: 52–60
  • Godon JJ, Zumstein E, Dabert P, Habouzit F, Moletta R. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 1997; 63: 2802–13
  • Inoue R, Ushida K. Vertical and horizontal transmission of intestinal commensal bacteria in the rat model. FEMS Microbiol Ecol 2003; 46: 213–19
  • Sakata T. Influence of short-chain fatty acids on intestinal growth and functions. Dietary fiber in health and disease, D Kritchevsky, C Bonfield. Plenum Press, New York, NY 1997; 191–9
  • Young GP, Gibson PR. Butyrate and the human cancer cell. Physiological and clinical aspects of short-chain fatty acids, JH Cummings, JL Rombeau, T Sakata. Cambridge University Press, CambridgeUK 1995; 319–35
  • Tsukahara T, Iwasaki Y, Nakayama K, Ushida K. Stimulation of butyrate production in the large intestine of weaning piglets by dietary fructooligosaccharides and its influence on the histological variables of the large intestinal mucosa. J Nutr Sci Vitaminol 2003; 49: 414–21
  • Shimotoyodome A, Meguro S, Hase T, Tokimitsu I, Sakata T. Short-chain fatty acids, but not lactate or succinate, stimulate mucus release in the rat colon. Comp Biochem Physiol 2000; 125A: 525–31
  • Holtug K, Rasmussen HS, Mortensen PB. An in vitro study of short-chain fatty acid concentrations, production, and absorption in pig (Sus scrofa) colon. Comp Biochem Physiol 1992; 103A: 189–97
  • Roediger WEW, Moore A. The effect of short-chain fatty acids on sodium absorption in the isolated human colon perfused through the vascular bed. Dig Dis Sci 1981; 26: 100–6
  • Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 2004; 70: 5810–17
  • Hashizume K, Tsukahara T, Yamada K, Koyama H, Ushida K. Megasphaera elsdenii JCM1772T normalizes hyperlactate production in the large intestine of fructooligosaccharide-fed rats by stimulating butyrate production. J Nutr 2003; 133: 3187–90
  • Yanabe M, Shibuya M, Gonda T, Asai H, Tanaka T, Sudou K, et al. Establishment of specific pathogen-free (SPF) rat colonies using gnotobiotic techniques. Exp Anim 2001; 50: 293–8
  • Hirayama K, Miyaji K, Kawamura S, Itoh K, Takahashi E, Mitsuoka T. Development of intestinal flora of human-flora-associated (HFA) mice in the intestine of their offspring. Exp Anim 1995; 44: 219–22
  • Mitsuoka T. Intestinal flora and the host. Pharmacia 1969; 6: 608–9
  • Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol 2001; 107: 129–34
  • Benno Y, Sawada K, Mitsuoka T. The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microb Immunol 1984; 28: 975–86
  • Benno Y, Suzuki K, Suzuki K, Narisawa K, Bruce WR, Mitsuoka T. Comparison of the fecal microflora in rural Japanese and urban Canadians. Microb Immunol 1986; 30: 521–32
  • Benno Y, Endo K, Mizutani T, Namba Y, Komori T, Mitsuoka T. Comparison of fecal microflora of elderly persons in rural and urban areas of Japan. Appl Environ Microbiol 1989; 55: 1100–5
  • Stewart CS, Flint HJ, Bryant MP. The rumen bacteria. The rumen microbial ecosystem2nd edn, PN Hobson, CS Stewart. Blackie Academic & Professional, LondonUK 1997; 10–72
  • Griffin WC, Lynch MJ. Polyhydric alcohols. Handbook of food additions, TE Furier. CRC Press, Ohio, OH 1972; 431–55