475
Views
17
CrossRef citations to date
0
Altmetric
Articles

Recognising angiosperm clades in the Early Cretaceous fossil record

Pages 414-429 | Received 29 Nov 2013, Accepted 21 Jun 2014, Published online: 17 Dec 2014

References

  • AntonelliA, SanmartínI. 2011. Mass extinction, gradual cooling, or rapid radiation? Reconstructing the spatiotemporal evolution of the ancient angiosperm genus Hedyosmum (Chloranthaceae) using empirical and simulated approaches. Syst Biol. 60:596–615.
  • [APG] (Angiosperm Phylogeny Group) III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc. 161:105–121.
  • AxelrodDI. 1952. A theory of angiosperm evolution. Evolution. 6:29–60.
  • AxelrodDI. 1970. Mesozoic paleogeography and early angiosperm history. Bot Rev. 36:277–319.
  • BarredaV, ArchangelskyS. 2006. The southernmost record of tropical pollen grains in the mid-Cretaceous of Patagonia, Argentina. Cretac Res. 27:778–787.
  • BasingerJF, DilcherDL. 1984. Ancient bisexual flowers. Science. 224:511–513.
  • BellCD, SoltisDE, SoltisPS. 2010. The age and diversification of the angiosperms re-revisited. Am J Bot. 97:1296–1303.
  • BerryEW. 1911. Systematic paleontology, Lower Cretaceous, Pteridophyta-Dicotyledonae. In: ClarkWB, editor. Lower Cretaceous. Baltimore (MD): Maryland Geological Survey, Johns Hopkins Press; p. 214–508.
  • BrennerGJ. 1963. The spores and pollen of the Potomac Group of Maryland. Md Dep Geol Mines Water Resour Bull. 27:1–215.
  • BrennerGJ. 1976. Middle Cretaceous floral provinces and early migrations of angiosperms. In: BeckCB, editor. Origin and early evolution of angiosperms. New York (NY): Columbia University Press; p. 23–47.
  • BurgerWC. 1977. The Piperales and the monocots. Alternate hypotheses for the origin of monocotyledonous flowers. Bot Rev. 43:345–393.
  • CantinoPD, DoyleJA, GrahamSW, JuddWS, OlmsteadRG, SoltisDE, SoltisPS, DonoghueMJ. 2007. Towards a phylogenetic nomenclature of Tracheophyta. Taxon. 56:822–846.
  • ClarkeJT, WarnockRCM, DonoghuePCJ. 2011. Establishing a time-scale for plant evolution. New Phytol. 192:266–301.
  • CoiffardC, MohrBAR, Bernardes-de-OliveiraMEC. 2013a. Jaguariba wiersemana gen. nov. et sp. nov. an Early Cretaceous member of crown group Nymphaeales (Nymphaeaceae) from northern Gondwana. Taxon. 62:141–151.
  • CoiffardC, MohrBAR, Bernardes-de-OliveiraMEC. 2013b. The Early Cretaceous Aroid, Spixiarum kipea gen. et sp. nov., and implications on early dispersal and ecology of basal monocots. Taxon. 62:997–1008.
  • CouperRA. 1958. British Mesozoic microspores and pollen grains. Palaeontogr Abt B. 103:75–179.
  • CranePR, FriisEM, PedersenKR. 1986. Lower Cretaceous angiosperm flowers: fossil evidence on early radiation of dicotyledons. Science. 232:852–854.
  • CranePR, FriisEM, PedersenKR. 1994. Paleobotanical evidence on the early radiation of magnoliid angiosperms. Plant Syst Evol Suppl. 8:51–72.
  • CranePR, PedersenKR, FriisEM, DrinnanAN. 1993. Early Cretaceous (early to middle Albian) platanoid inflorescences associated with Sapindopsis leaves from the Potomac Group of eastern North America. Syst Bot. 18:328–344.
  • DahlgrenR, BremerK. 1985. Major clades of angiosperms. Cladistics. 1:349–368.
  • DettmannME, JarzenDM. 1996. Pollen of proteaceous-type from latest Cretaceous sediments, southeastern Australia. Alcheringa. 20:103–160.
  • DilcherDL, CranePR. 1984. Archaeanthus: an early angiosperm from the Cenomanian of the Western Interior of North America. Ann Mo Bot Gard. 71:351–383.
  • DilcherDL, CrepetWL, BeekerCD, ReynoldsHC. 1976. Reproductive and vegetative morphology of a Cretaceous angiosperm. Science. 191:854–856.
  • DilcherDL, WangH. 2009. An Early Cretaceous fruit with affinities to Ceratophyllaceae. Am J Bot. 96:2256–2269.
  • DonoghueMJ, DoyleJA. 1989. Phylogenetic analysis of angiosperms and the relationships of Hamamelidae. In: CranePR, BlackmoreS, editors. Evolution, systematics, and fossil history of the Hamamelidae. Vol. 1. Oxford (UK): Clarendon Press; p. 17–45.
  • DoyleJA. 1969. Cretaceous angiosperm pollen of the Atlantic Coastal Plain and its evolutionary significance. J Arnold Arbor. 50:1–35.
  • DoyleJA. 1973. Fossil evidence on early evolution of the monocotyledons. Q Rev Biol. 48:399–413.
  • DoyleJA. 1992. Revised palynological correlations of the lower Potomac Group (USA) and the Cocobeach sequence of Gabon (Barremian–Aptian). Cretac Res. 13:337–349.
  • DoyleJA. 2000. Paleobotany, relationships, and geographic history of Winteraceae. Ann Mo Bot Gard. 87:303–316.
  • DoyleJA. 2005. Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses. Grana. 44:227–251.
  • DoyleJA. 2007. Systematic value and evolution of leaf architecture across the angiosperms in light of molecular phylogenetic analyses. Cour Forsch-Inst Senckenberg. 258:21–37.
  • DoyleJA. 2012. Molecular and fossil evidence on the origin of angiosperms. Annu Rev Earth Planet Sci. 40:301–326.
  • DoyleJA, BiensP, DoerenkampA, JardinéS. 1977. Angiosperm pollen from the pre-Albian Cretaceous of Equatorial Africa. Bull Cent Rech Explor-Prod Elf-Aquitaine. 1:451–473.
  • DoyleJA, EndressPK. 2000. Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. Int J Plant Sci. 161(Suppl):S121–S153.
  • DoyleJA, EndressPK. 2010. Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: Magnoliidae and eudicots. J Syst Evol. 48:1–35.
  • DoyleJA, EndressPK. 2014. Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: ANITA lines and relatives of Chloranthaceae. Int J Plant Sci.175:555–600.
  • DoyleJA, EndressPK, UpchurchGR. 2008. Early Cretaceous monocots: a phylogenetic evaluation. Acta Mus Natl Pragae Ser B Hist Nat. 64(2–4):59–87.
  • DoyleJA, HickeyLJ. 1976. Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. In: BeckCB, editor. Origin and early evolution of angiosperms. New York (NY): Columbia University Press; p. 139–206.
  • DoyleJA, HottonCL. 1991. Diversification of early angiosperm pollen in a cladistic context. In: BlackmoreS, BarnesSH, editors. Pollen and spores: patterns of diversification. Oxford (UK): Clarendon Press; p. 169–195.
  • DoyleJA, HottonCL, WardJV. 1990. Early Cretaceous tetrads, zonasulculate pollen, and Winteraceae. I. Taxonomy, morphology, and ultrastructure. Am J Bot.77:1544–1557.
  • DoyleJA, JardinéS, DoerenkampA. 1982. Afropollis, a new genus of early angiosperm pollen, with notes on the Cretaceous palynostratigraphy and paleoenvironments of Northern Gondwana. Bull Cent Rech Explor-Prod Elf-Aquitaine. 6:39–117.
  • DoyleJA, UpchurchGR. in press. Angiosperm clades in the Potomac Group: what have we learned since 1977?Bull Peabody Mus Nat Hist.
  • DoyleJA, Van CampoM, LugardonB. 1975. Observations on exine structure of Eucommiidites and Lower Cretaceous angiosperm pollen. Pollen Spores. 17:429–486.
  • DrinnanAN, CranePR, FriisEM, PedersenKR. 1990. Lauraceous flowers from the Potomac Group (mid-Cretaceous) of eastern North America. Bot Gaz. 151:370–384.
  • DrinnanAN, CranePR, FriisEM, PedersenKR. 1991. Angiosperm flowers and tricolpate pollen of buxaceous affinity from the Potomac Group (mid-Cretaceous) of eastern North America. Am J Bot. 78:153–176.
  • DuvallMR, MathewsS, MohammadN, RussellT. 2006. Placing the monocots: conflicting signal from trigenomic analyses. Aliso. 22:79–90.
  • EklundH, DoyleJA, HerendeenPS. 2004. Morphological phylogenetic analysis of living and fossil Chloranthaceae. Int J Plant Sci. 165:107–151.
  • EndressPK. 1987. The Chloranthaceae: reproductive structures and phylogenetic position. Bot Jahrb Syst. 109:153–226.
  • EndressPK, DoyleJA. 2009. Reconstructing the ancestral angiosperm flower and its initial specializations. Am J Bot. 96:22–66.
  • FeildTS, ArensNC, DoyleJA, DawsonTE, DonoghueMJ. 2004. Dark and disturbed: a new image of early angiosperm ecology. Paleobiology. 30:82–107.
  • FeildTS, ChateletDS, BrodribbTJ. 2009. Ancestral xerophobia: a hypothesis on the whole plant ecophysiology of early angiosperms. Geobiology. 7:237–264.
  • FontaineWM. 1889. The Potomac or Younger Mesozoic flora. US Geol Surv Monogr. 15:1–377.
  • FriisEM, CranePR, PedersenKR. 1986. Floral evidence for Cretaceous chloranthoid angiosperms. Nature. 320:163–164.
  • FriisEM, CranePR, PedersenKR. 1988. Reproductive structures of Cretaceous Platanaceae. Biol Skr Dan Vidensk Selsk. 31:1–55.
  • FriisEM, CranePR, PedersenKR. 1997. Anacostia, a new basal angiosperm from the Early Cretaceous of North America and Portugal with trichotomocolpate/monocolpate pollen. Grana. 36:225–244.
  • FriisEM, CranePR, PedersenKR. 2011. Early flowers and angiosperm evolution. Cambridge (UK): Cambridge University Press.
  • FriisEM, DoyleJA, EndressPK, LengQ. 2003. Archaefructus – angiosperm precursor or specialized early angiosperm?Trends Plant Sci. 8:369–373.
  • FriisEM, EklundH, PedersenKR, CranePR. 1994. Virginianthus calycanthoides gen. et sp. nov. – a calycanthaceous flower from the Potomac Group (Early Cretaceous) of eastern North America. Int J Plant Sci. 155:772–785.
  • FriisEM, PedersenKR. 2011. Canrightia resinifera gen. et sp. nov., a new extinct angiosperm with Retimonocolpites-type pollen from the Early Cretaceous of Portugal: missing link in the eumagnoliid tree?Grana. 50:3–29.
  • FriisEM, PedersenKR, CranePR. 1994. Angiosperm floral structures from the Early Cretaceous of Portugal. Plant Syst Evol Suppl. 8:31–49.
  • FriisEM, PedersenKR, CranePR. 1995. Appomattoxia ancistrophora gen. et sp. nov., a new Early Cretaceous plant with similarities to Circaeaster and extant Magnoliidae. Am J Bot. 82:933–943.
  • FriisEM, PedersenKR, CranePR. 1999. Early angiosperm diversification: the diversity of pollen associated with angiosperm reproductive structures in Early Cretaceous floras from Portugal. Ann Mo Bot Gard. 86:259–296.
  • FriisEM, PedersenKR, CranePR. 2000. Fossil floral structures of a basal angiosperm with monocolpate, reticulate-acolumellate pollen from the Early Cretaceous of Portugal. Grana. 39:226–239.
  • FriisEM, PedersenKR, CranePR. 2010a. Cretaceous diversification of angiosperms in the western part of the Iberian Peninsula. Rev Palaeobot Palynol.162:341–361.
  • FriisEM, PedersenKR, CranePR. 2010b. Diversity in obscurity: fossil flowers and the early history of angiosperms. Philos Trans R Soc B.365:369–382.
  • FriisEM, PedersenKR, von BalthazarM, GrimmGW, CranePR. 2009. Monetianthus mirus gen. et sp. nov., a nymphaealean flower from the Early Cretaceous of Portugal. Int J Plant Sci. 170:1086–1101.
  • FurnessCA, MagallónS, RudallPJ. 2007. Evolution of endoapertures in early-divergent eudicots, with particular reference to pollen morphology in Sabiaceae. Plant Syst Evol. 263:77–92.
  • GandolfoMA, NixonKC, CrepetWL. 2000. Monocotyledons: a review of their Early Cretaceous record. In: WilsonKL, MorrisonDA, editors. Monocots: systematics and evolution. Collingwood (Australia): CSIRO Publishing; p. 44–51.
  • GeetaR, DávalosLM, LevyA, BohsL, LavinM, MummenhoffK, SinhaN, WojciechowskiMF. 2012. Keeping it simple: flowering plants tend to retain, and revert to, simple leaves. New Phytol. 193:481–493.
  • GóczánF, JuhászM. 1984. Monosulcate pollen grains of angiosperms from Hungarian Albian sediments I. Acta Bot Hung. 30:289–319.
  • Gomez B, Daviero-Gomez V, Martín-Closas C, de la Fuente M. 2006. Montsechia vidalii, an early aquatic angiosperm from the Barremian of Spain. Abstracts, 7th European Palaeobotany and Palynology Conference; Sep 6–11; Prague. p. 49.
  • HedlundRW, NorrisG. 1968. Spores and pollen grains from Fredericksburgian (Albian) strata, Marshall County, Oklahoma. Pollen Spores. 10:129–159.
  • HeimhoferU, HochuliPA. 2010. Early Cretaceous angiosperm pollen from a low-latitude succession (Araripe Basin, NE Brazil). Rev Palaeobot Palynol. 161:105–126.
  • HerendeenPS. 1991. Lauraceous wood from the mid-Cretaceous Potomac group of eastern North America: Paraphyllanthoxylon marylandense sp. nov. Rev Palaeobot Palynol. 69:277–290.
  • HermsenEJ, HendricksJR. 2008. W(h)ither fossils? Studying morphological character evolution in the age of molecular sequences. Ann Mo Bot Gard. 95:72–100.
  • HesseM. 2001. Pollen characters of Amborella trichopoda (Amborellaceae): a reinvestigation. Int J Plant Sci. 162:201–208.
  • HickeyLJ, DoyleJA. 1977. Early Cretaceous fossil evidence for angiosperm evolution. Bot Rev. 43:1–104.
  • HickeyLJ, WolfeJA. 1975. The bases of angiosperm phylogeny: vegetative morphology. Ann Mo Bot Gard. 62:538–589.
  • HughesNF, McDougallAB. 1990. Barremian–Aptian angiospermid pollen records from southern England. Rev Palaeobot Palynol. 65:145–151.
  • JansenRK, CaiZ, RaubesonLA, DaniellH, dePamphilisCW, Leebens-MackJ, MüllerKF, Guisinger-BellianM, HaberleRC, HansenAK, et al. 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA. 104:19369–19374.
  • JardinéS, MagloireL. 1965. Palynologie et stratigraphie du Crétacé des bassins du Sénégal et de Côte d'Ivoire [Palynology and stratigraphy of the Cretaceous of the Senegal and Ivory Coast basins]. Mém Bur Rech Géol Min. 32:187–245.
  • JudNA, HickeyLJ. 2013. Potomacapnos apeleutheron gen. et sp. nov., a new Early Cretaceous angiosperm from the Potomac Group and its implications for the evolution of eudicot leaf architecture. Am J Bot. 100:2437–2449.
  • KrassilovV. 2011. On Montsechia, an angiospermoid plant from the Lower Cretaceous of Las Hoyas, Spain: new data and interpretations. Acta Palaeobot. 51:181–205.
  • KvaČekZ, FriisEM. 2010. Zlatkocarpus gen. nov., a new angiosperm reproductive structure with monocolpate-reticulate pollen from the Late Cretaceous (Cenomanian) of the Czech Republic. Grana. 49:115–127.
  • KvaČekJ, GomezB, ZetterR. 2012. The early angiosperm Pseudoasterophyllites cretaceus from Albian–Cenomanian of Czech Republic and France revisited. Acta Palaeontol Pol. 57:437–443.
  • LeroyJF. 1983. The origin of angiosperms: an unrecognized ancestral dicotyledon, Hedyosmum (Chloranthales), with a strobiloid flower is living today. Taxon. 32:169–175.
  • LesquereuxL. 1892. The flora of the Dakota Group. US Geol Surv Monogr. 17:1–400.
  • MagallónS, CranePR, HerendeenPS. 1999. Phylogenetic pattern, diversity, and diversification of eudicots. Ann Mo Bot Gard. 86:297–372.
  • MagallónS, SandersonMJ. 2001. Absolute diversification rates in angiosperm clades. Evolution. 55:1762–1780.
  • Martín-ClosasC. 2003. The fossil record and evolution of freshwater plants: a review. Geol Acta. 1:315–338.
  • MartínezC, MadriñánS, ZavadaM, JaramilloCA. 2013. Tracing the fossil pollen record of Hedyosmum (Chloranthaceae), an old lineage with recent Neotropical diversification. Grana. 52:161–180.
  • MassoniJ, DoyleJA, SauquetH. in press. Fossil calibration of Magnoliidae, and ancient lineage of angiosperms. Palaeontol Electron.
  • MathewsS, DonoghueMJ. 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science. 286:947–950.
  • MohrBAR, Bernardes-de-OliveiraMEC. 2004. Endressinia brasiliana, a magnolialean angiosperm from the Lower Cretaceous Crato Formation (Brazil). Int J Plant Sci. 165:1121–1133.
  • MohrBAR, Bernardes-de-OliveiraMEC, TaylorDW. 2008. Pluricarpellatia, a nymphaealean angiosperm from the Lower Cretaceous of northern Gondwana (Crato Formation, Brazil). Taxon. 57:1147–1158.
  • MohrBAR, CoiffardC, Bernardes-de-OliveiraMEC. 2013. Schenkeriphyllum glanduliferum, a new magnolialean angiosperm from the Early Cretaceous of Northern Gondwana and its relationships to fossil and modern Magnoliales. Rev Palaeobot Palynol. 189:57–72.
  • MooreMJ, BellCD, SoltisPS, SoltisDE. 2007. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA. 104:19363–19368.
  • MooreMJ, HassanN, GitzendannerMA, BruennRA, CroleyM, VandeventerA, HornJW, DhingraA, BrockingtonSF, LatvisM, et al. 2011. Phylogenetic analysis of the plastid inverted repeat for 244 species: insights into deeper-level angiosperm relationships from a long, slowly evolving sequence region. Int J Plant Sci. 172:541–558.
  • MullerJ. 1968. Palynology of the Pedawan and Plateau Sandstone Formations (Cretaceous-Eocene) in Sarawak, Malaysia. Micropaleontology.14:1–37.
  • MullerJ. 1970. Palynological evidence on early differentiation of angiosperms. Biol Rev Camb Philos Soc. 45:417–450.
  • NixonKC. 2008. Paleobotany, evidence, and molecular dating: an example from the Nymphaeales. Ann Mo Bot Gard. 95:43–50.
  • NixonKC, CrepetWL, StevensonD, FriisEM. 1994. A reevaluation of seed plant phylogeny. Ann Mo Bot Gard. 81:484–533.
  • OhIC, DenkT, FriisEM. 2003. Evolution of Illicium (Illiciaceae): mapping morphological characters on the molecular tree. Plant Syst Evol. 240:175–209.
  • PacltováB. 1966. Pollen grains of angiosperms in the Cenomanian Peruc Formation in Bohemia. Palaeobotanist. 15:52–54.
  • ParkinsonCL, AdamsKL, PalmerJD. 1999. Multigene analyses identify the three earliest lineages of extant flowering plants. Curr Biol. 9:1485–1488.
  • PedersenKR, CranePR, DrinnanAN, FriisEM. 1991. Fruits from the mid-Cretaceous of North America with pollen grains of the Clavatipollenites type. Grana. 30:577–590.
  • PedersenKR, FriisEM, CranePR, DrinnanAN. 1994. Reproductive structures of an extinct platanoid from the Early Cretaceous (latest Albian) of eastern North America. Rev Palaeobot Palynol. 80:291–303.
  • PedersenKR, von BalthazarM, CranePR, FriisEM. 2007. Early Cretaceous floral structures and in situ tricolpate-striate pollen: new early eudicots from Portugal. Grana. 46:176–196.
  • PennyJHJ. 1988. Early Cretaceous acolumellate semitectate pollen from Egypt. Palaeontology. 31:373–418.
  • PueblaG. 2009. A new angiosperm leaf morphotype from the Early Cretaceous (Late Aptian) of San Luis Basin, Argentina. Ameghiniana. 46:557–566.
  • QiuYL, LeeJ, Bernasconi-QuadroniF, SoltisDE, SoltisPS, ZanisM, ZimmerEA, ChenZ, SavolainenV, ChaseMW. 1999. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature. 402:404–407.
  • QiuYL, LiL, WangB, XueJY, HendryTA, LiRQ, LiuY, HudsonGT, ChenZD. 2010. Angiosperm phylogeny inferred from sequences of four mitochondrial genes. J Syst Evol. 48:391–425.
  • ReesPM, ZieglerAM, ValdesPJ. 2000. Jurassic phytogeography and climates: new data and model comparisons. In: HuberBT, MacLeodKG, WingSL, editors. Warm climates in earth history. Cambridge (UK): Cambridge University Press; p. 297–318.
  • RegaliMSP. 1989. Tucanopollis, um gênero novo das angiospermas primitivas [Tucanopollis, a new genus of primitive angiosperms]. Bol Geociênc Petrobrás. 3:395–402.
  • RegaliMS, UesuguiN, SantosAS. 1974. Palinologia dos sedimentos meso-cenozóicos do Brasil [Palynology of the Meso-Cenozoic sediments of Brazil]. Bol Téc Petrobrás. 17:177–191, 263–301.
  • RetallackG, DilcherDL. 1981. Early angiosperm reproduction: Prisca reynoldsii, gen. et sp. nov. from mid-Cretaceous coastal deposits in Kansas, USA. Palaeontogr Abt B. 179:103–137.
  • RomanovMS, DilcherDL. 2013. Fruit structure in Magnoliaceae s.l. and Archaeanthus and their relationships. Am J Bot. 100:1494–1508.
  • SaarelaJM, RaiHS, DoyleJA, EndressPK, MathewsS, MarchantAD, BriggsBG, GrahamSW. 2007. Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature. 446:312–315.
  • SampsonFB. 1993. Pollen morphology of the Amborellaceae and Hortoniaceae (Hortonioideae: Monimiaceae). Grana. 32:154–162.
  • SauquetH, WestonPH, BarkerNP, AndersonCL, CantrillDJ, SavolainenV. 2009. Using fossils and molecular data to reveal the origins of the Cape proteas (subfamily Proteoideae). Mol Phylogenet Evol. 51:31–43.
  • SchrankE. 2013. New taxa of winteraceous pollen from the Lower Cretaceous of Israel. Rev Palaeobot Palynol. 195:19–25.
  • SmithSA, BeaulieuJM, DonoghueMJ. 2010. An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc Natl Acad Sci USA. 107:5897–5902.
  • SoltisDE, SoltisPS, EndressPK, ChaseMW. 2005. Phylogeny and evolution of angiosperms. Sunderland (MA): Sinauer Associates.
  • SoltisPS, SoltisDE, ChaseMW. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature. 402:402–404.
  • SpringerMS, TeelingEC, MadsenO, StanhopeMJ, de JongWW. 2001. Integrated fossil and molecular data reconstruct bat echolocation. Proc Natl Acad Sci USA. 98:6241–6246.
  • SunG, DilcherDL, ZhengS, ZhouZ. 1998. In search of the first flower: a Jurassic angiosperm, Archaefructus, from northeast China. Science. 282:1692–1695.
  • SunG, DilcherDL, WangH, ChenZ. 2011. A eudicot from the Early Cretaceous of China. Nature. 471:625–628.
  • SunG, JiQ, DilcherDL, ZhengS, NixonKC, WangX. 2002. Archaefructaceae, a new basal angiosperm family. Science. 296:899–904.
  • TakahashiM. 1995. Development of structure-less pollen wall in Ceratophyllum demersum L. (Ceratophyllaceae). J Plant Res. 108:205–208.
  • TakhtajanAL. 1969. Flowering plants: origin and dispersal. Washington (DC): Smithsonian.
  • TaylorDW. 2008. Phylogenetic analysis of Cabombaceae and Nymphaeaceae based on vegetative and leaf architectural characters. Taxon. 57:1082–1095.
  • TaylorDW, BrennerGJ, BashaSH. 2008. Scutifolium jordanicum gen. et sp. nov. (Cabombaceae), an aquatic fossil plant from the Lower Cretaceous of Jordan, and the relationships of related leaf fossils to living genera. Am J Bot.95:340–352.
  • TaylorDW, HickeyLJ. 1992. Phylogenetic evidence for the herbaceous origin of angiosperms. Plant Syst Evol. 180:137–156.
  • TeixeiraC. 1948. Flora mesozóica portuguesa (part 1)[Portuguese Mesozoic flora]. Lisbon (Portugal): Serviços Geológicos de Portugal.
  • UpchurchGR. 1984a. Cuticle evolution in Early Cretaceous angiosperms from the Potomac Group of Virginia and Maryland. Ann Mo Bot Gard.71:522–550.
  • UpchurchGR. 1984b. Cuticular anatomy of angiosperm leaves from the Lower Cretaceous Potomac Group. I. Zone I leaves. Am J Bot. 71:192–202.
  • UpchurchGR, CranePR, DrinnanAN. 1994. The megaflora from the Quantico locality (upper Albian), Lower Cretaceous Potomac Group of Virginia. Va Mus Nat Hist Mem. 4:1–57.
  • UpchurchGR, DilcherDL. 1990. Cenomanian angiosperm leaf megafossils, Dakota Formation, Rose Creek locality, Jefferson County, southeastern Nebraska. US Geol Surv Bull. 1915:1–55.
  • VakhrameevVA. 1952. Stratigrafiya i iskopaemaya flora melovykh otlozheniy Zapadnogo Kazakhstana [Stratigraphy and fossil flora of Cretaceous deposits of Western Kazakhstan]. Regional'naya stratigrafiya SSSR. Vol. 1. Moscow: Akademiya Nauk SSSR.
  • Von BalthazarM, CranePR, PedersenKR, FriisEM. 2011. New flowers of Laurales from the Early Cretaceous (Early to Middle Albian) of eastern North America. In: WanntorpL, Ronse De CraeneLP, editors. Flowers on the tree of life. Cambridge (UK): Cambridge University Press; p. 49–87.
  • Von BalthazarM, PedersenKR, CranePR, FriisEM. 2008. Carpestella lacunata gen. et sp. nov., a new basal angiosperm flower from the Early Cretaceous (Early to Middle Albian) of eastern North America. Int J Plant Sci. 169:890–898.
  • Von BalthazarM, PedersenKR, CranePR, StampanoniM, FriisEM. 2007. Potomacanthus lobatus gen. et sp. nov., a new flower of probable Lauraceae from the Early Cretaceous (Early to Middle Albian) of eastern North America. Am J Bot. 94:2041–2053.
  • WalkerJW, BrennerGJ, WalkerAG. 1983. Winteraceous pollen in the Lower Cretaceous of Israel: early evidence of a magnolialean angiosperm family. Science. 220:1273–1275.
  • WalkerJW, WalkerAG. 1984. Ultrastructure of Lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. Ann Mo Bot Gard. 71:464–521.
  • WangH, DilcherDL. 2006. Aquatic angiosperms from the Dakota Formation (Albian, Lower Cretaceous), Hoisington III locality, Kansas, USA. Int J Plant Sci. 167:385–401.
  • WangX, ZhengXT. 2012. Reconsideration on two characters of early angiosperm Archaefructus. Palaeoworld. 21:193–201.
  • WardJV, DoyleJA. 1994. Ultrastructure and relationships of mid-Cretaceous polyforates and triporates from Northern Gondwana. In: KurmannMH, DoyleJA, editors. Ultrastructure of fossil spores and pollen. Kew (UK): Royal Botanic Gardens; p. 161–172.
  • WardJV, DoyleJA, HottonCL. 1989. Probable granular magnoliid angiosperm pollen from the Early Cretaceous. Pollen Spores. 33:101–120.
  • WolfeJA, DoyleJA, PageVM. 1975. The bases of angiosperm phylogeny: paleobotany. Ann Mo Bot Gard. 62:801–824.
  • YooMJ, BellCD, SoltisPS, SoltisDE. 2005. Divergence times and historical biogeography of Nymphaeales. Syst Bot. 30:693–704.
  • ZhangLB, RennerS. 2003. The deepest splits in Chloranthaceae as resolved by chloroplast sequences. Int J Plant Sci. 164(Suppl):S383–S392.
  • ZhangN, ZengL, ShanH, MaH. 2012. Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms. New Phytol. 195:923–937.
  • ZhangQ, AntonelliA, FeildTS, KongHZ. 2011. Revisiting taxonomy, morphological evolution, and fossil calibration strategies in Chloranthaceae. J Syst Evol. 49:315–329.
  • ZieglerAM, EshelG, ReesPM, RothfusTA, RowleyDB, SunderlinD. 2003. Tracing the tropics across land and sea: Permian to present. Lethaia. 36:227–254.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.