Publication Cover
Historical Biology
An International Journal of Paleobiology
Volume 31, 2019 - Issue 9
377
Views
1
CrossRef citations to date
0
Altmetric
Articles

Scaling of species diversity and body mass in mammals: Cope’s rule and the evolutionary cost of large size

Pages 1242-1255 | Received 13 Feb 2018, Accepted 13 Feb 2018, Published online: 23 Mar 2018

References

  • Alroy J. 1998. Cope’s rule and the dynamics of body mass evolution in North American mammals. Science. 280:731–734.10.1126/science.280.5364.731
  • Amarillo-Suárez AR, Stilwell RC, Fox CW. 2011. Natural selection on body size is mediated by multiple interacting factors: a comparison of beetle populations varying naturally and experimentally in body size. Ecol Evol. 1:1–14.10.1002/ece3.1
  • Barry JC, Morgan ME, Flynn LJ, Pilbeam D, Jacobs LL, Lindsay EH, Raza SM, Solounias N. 1995. Patterns of faunal turnover and diversity in the Cenozoic Siwaliks of northern Pakistan. Palaeogeog Palaeoclimat Paleaoecol. 115:209–226.10.1016/0031-0182(94)00112-L
  • Blackburn TM, Gaston kJ. 2003. Macroecology: concepts and consequences. Cambridge: Cambridge U. Press.
  • Bokma F, Godinot M, Maridet O, Ladevèze S, Costeur L, Sole F, Gheerbrant E, Peigné S, Jacques F, Laurin M. 2015. Testing for Depéret’s rule (body size increase) in mammals using combined extinct and extant data. Syst Biol. 65:98–108.
  • Brown JH, Maurer BA. 1986. Body size, ecological dominance and Cope’s rule. Science. 324:248–250.
  • Brown JH, Nicoletto PF. 1991. Spatial scaling of species composition: body masses of North American land mammals. Am Nat. 138:1478–1512.10.1086/285297
  • Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP, Sechrest W, Orme CDL, Purvis A. 2005. Multiple causes of high extinction risk in large mammal species. Science. 309:1239–1241.10.1126/science.1116030
  • Carranza J. 1996. Sexual selection for male body mass and the evolution of litter size in mammals. Am Nat. 148:81–100.10.1086/285912
  • Cassini MH. 2017. Role of fecundity selection on the evolution of sexual size dimorphism in mammals. An Behav. 128:1–4.10.1016/j.anbehav.2017.03.030
  • Christiansen P, Harris JM. 2005. Body size of Smilodon (Mammalia: Felidae). J Morph. 266:369–384.10.1002/(ISSN)1097-4687
  • Clauset A, Erwin DH. 2008. The evolution and distribution of species body size. Science. 321:399–401.10.1126/science.1157534
  • Cuff AR, Randau M, Head J, Hutchinson JR, Pierce SE, Goswami A. 2015. Big cat, small cat: reconstructing body size evolution in living and extinct Felidae. J Ev Bio. 28:1516–1525.10.1111/jeb.2015.28.issue-8
  • Damuth J. 2007. A macroevolutionary explanation for energy equivalence in the scaling of body size and population density. Am Nat. 169:621–631.10.1086/513495
  • Damuth J, MacFadden BJ, editors. 1990. Body size in mammalian paleobiology. New York (NY): Cambridge U. Press.
  • Depéret CJJ. 1909. The transformations of the animal world. London: Kegan, Paul, Trench, Trübner.
  • Dial KP, Marzluff JM. 1988. Are the smallest organisms the most diverse? Ecology. 69:1620–1624.10.2307/1941660
  • Egi N. 2001. Body Mass estimates in extinct mammals from limb bone dimensions: the case of North American hyaenodontids. Palaeontology. 44:497–528.10.1111/pala.2001.44.issue-3
  • Finarelli JT, Flynn RT. 2006. Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. Syst Bio. 55:301–313.10.1080/10635150500541698
  • Fleischer RC, Johnston RF. 1982. Natural selection on body size and proportions in house sparrows. Nature. 298:747–749.10.1038/298747a0
  • Flynn LJ, Barry JC, Morgan ME, Pilbeam D, Jacobs LL, Lindsay EH. 1995. Neogene Siwalik mammalian lineages: species longevities, rates of change, and modes of speciation. Palaeogeog Paleoclimat Palaeoecol. 115:249–264.10.1016/0031-0182(94)00114-N
  • Gardezi T, da Silva J. 1999. Diversity in relation to body size in mammals: a comparative study. Am Nat. 153:110–123.10.1086/303150
  • Gould SJ, Eldredge N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology. 3:115–151.10.1017/S0094837300005224
  • Grant PR, Grant BR. 2014. 40 Years of evolution: Darwin’s finches on Daphne Major Island. Princeton: Princeton U. Press.10.1515/9781400851300
  • Gunnell GF. 1998. Creodonta. In: Janis CM, Scott KM, Jacobs LL, editors. Evolution of Tertiary Mammals. vol. 1 terrestrial carnivores, ungulates, and ungulatelike mammals. New York (NY): Cambridge U. Press; p. 91–109.
  • Harestad AS, Bunnell FL. 1979. Home range and body weight – a reevaluation. Ecology. 60:389–402.10.2307/1937667
  • Harris AH. 2017. Pleistocene vertebrates of southwestern USA and northwestern Mexico [accessed May 2017]. https://www.utep.edu/leb/pleistnm/default.htm.
  • Heim NA, Knope ML, Schall EK, Wang SC, Payne JL. 2015. Cope’s rule in the evolution of marine animals. Science. 347:867–870.10.1126/science.1260065
  • Hone DWE, Benton MJ. 2007. Cope’s rule in the Pterosauria, and differing perceptions of Cope’s rule at different taxonomic levels. J Ev Bio. 20:1164–1170.10.1111/jeb.2007.20.issue-3
  • Hulbert RC. 1993. Taxonomic evolution in North American Neogene horses (subfamily Equinae): the rise and fall of an adaptive radiation. Paleobiology. 19:216–234.
  • Hutchinson GE. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat. 93:145–159.
  • Hutchinson GE, MacArthur RH. 1959. A theoretical ecological model of size distributions among species of animals. Am Nat. 93:117–125.10.1086/282063
  • Jones KE, Bielby J, Cardillo M, Fritz SA, O’Del J, Orme CDL, Safi K, Sechrest W, Boakes EH, Carbone C, et al. 2009. PanTHERIA: a species level database of life-history, ecology, and geography of extant and recently extinct mammals. Ecology. 90:2648.10.1890/08-1494.1
  • Kelt DA, Van Vuren D. 1999. Energetic constraints and the relationship between body size and home range in mammals. Ecology. 80:337–340.10.1890/0012-9658(1999)080[0337:ECATRB]2.0.CO;2
  • Kingsolver JG, Pfennig DW. 2004. Individual-level selection as a cause of Cope’s rule of phyletic size increase. Evolution. 58:1608–1612.10.1111/evo.2004.58.issue-7
  • Kleiber M. 1961. The fire of life. New York (NY): Wiley.
  • Koch PL, Barnosky AD. 2006. Late quaternary extinctions: state of the debate. Annual Rev Ecol Evol Syst. 37:215–250.10.1146/annurev.ecolsys.34.011802.132415
  • Kozłowski J, Gawelczyk AT. 2002. Why are species’ body size distributions usually skewed to the right? Func Ecol. 16:419–432.10.1046/j.1365-2435.2002.00646.x
  • Liow LH, Fortelius M, Bingham E, Lintulaakso K, Mannila H, Flynn L, Stenseth NC. 2008. Higher origination and extinction rates in larger mammals. Proc Nat Acad Sci US. 16:6097–6102.10.1073/pnas.0709763105
  • Lyons K, Smith F. 2013. Macroecological patterns of body size in mammals across time and space. In: Smith FA, Lyons K, editors. Animal body size: linking pattern and process across space, time and taxonomic group. Chicago, IL: U. Chicago Press; p. 116–144.10.7208/chicago/9780226012285.001.0001
  • MacFadden BJ. 1986. Fossil horses from “Eohippus” (Hyracotherium) to Equus: scaling, Cope’s law, and the evolution of body size. Paleobiology. 12:355–369.10.1017/S0094837300003109
  • MacFadden BJ. 1992. Fossil horses: systematics, paleobiology, and evolution of the Family Equidae. New York (NY): Cambridge U. Press.
  • MacFadden BJ. 1998. Equidae. In Janis CM, Scott KM, Jacobs LL, editors. Evolution of Tertiary Mammals. Vol. 1: terrestrial carnivores, ungulates, and ungulatelike mammals. New York (NY): Cambridge U. Press; p. 537–559.
  • MacFadden BJ, Hulbert RC Jr. 1990. Body size estimates and size distribution of ungulate mammals from the late Miocene Love Bone Bed of Florida. In: Damuth J, MacFadden BJ, editors. Body size in mammalian paleobiology: estimation and biological implications. New York (NY): Cambridge University Press; p. 337–363.
  • Marquet PA, Quiñones RA, Abades S, Labra F, Tognelli M, Arim M, Rivadeneira M. 2008. Scaling and power-laws in ecological systems. J Exp Bio. 208:1749–1769.
  • Martin RA. 1980. Body mass and basal metabolism of extinct mammals. Comp Biochem Physiol. 56:307–314.10.1016/0300-9629(80)90167-X
  • Martin RA. 1986. Energy, ecology and cotton rat evolution. Paleobiology. 12:370–382.10.1017/S0094837300003110
  • Martin RA. 1990. Estimating body mass and correlated variables in extinct mammals: travels in the fourth dimension. In: Damuth J, MacFadden BJ, editors. Body size in mammalian paleobiology: estimation and biological implications. New York (NY): Cambridge U. Press; p. 49–68.
  • Martin R. 1992. Generic species richness and body mass in North American mammals: support for the inverse relationship of body size and speciation rate. Hist Biol. 6:73–90.10.1080/10292389209380420
  • Martin RA. 1996. Dental evolution and size change in the North American muskrat: classification and tempo of a presumed phyletic sequence. In: Seymour K, Stewart K, editors. Palaeoecology and Palaeonvironments of Late Cenozoic mammals. Toronto: University of Toronto Press; p. 431–457.
  • Martin LD. 1998. Nimravidae. In: Janis CM, Scott KM, Jacobs LL, editors. Evolution of Tertiary mammals. Vol. 1: terrestrial carnivores, ungulates, and ungulatelike mammals. New York (NY): Cambridge University Press; p. 228–235.
  • Martin RA. 2017a. Body size in (mostly) mammals: mass, speciation rates and the translation of gamma to alpha diversity on evolutionary timescales. Hist Biol dx. DOI:10.1080/08912963.2016.1211646.
  • Martin RA. 2017b. Body mass and correlated ecological variables in the North American muskrat: evolutionary rates and the tradeoff of large size and speciation potential. Hist Biol dx. DOI:10.1080/08912963.2017.1384474.
  • Martin RA, Honey JG, Peláez-Campomanes P. 2000. The Meade Basin rodent project: a progress report. Paludicola. 3:1–32.
  • Martin RA, Peláez-Campomanes P. 2014. Diversity dynamics of the late Cenozoic rodent community from southwestern Kansas: the influence of historical processes on community structure. J Quat Sci. 29:221–231.10.1002/jqs.v29.3
  • Martin RA, Marcolini F, Grady F. 2009. The early Pleistocene Hamilton Cave muskrats and a review of muskrat size change through the late Neogene. Paludicola. 7:61–66.
  • McKinney ML. 1990. Trends in body-size evolution. In: McNamara K, editor. Evolutionary trends. Tucson, AZ: U. of Arizona Press; p. 75–118.
  • Mihlbachler MC, Rivals F, Solounias N, Semprebon GM. 2011. Dietary change and evolution of horses in North America. Science. 331(6021):1178–1181.
  • Monroe MJ, Bokma F. 2009. Do speciation rates drive rates of body size evolution in mammals? Am Nat. 174:912–918.10.1086/646606
  • Nagel L, Schluter D. 1998. Body size, natural selection, and speciation in sticklebacks. Evolution. 52:209–218.10.1111/evo.1998.52.issue-1
  • Ofstad EG, Herfindel I, Solberg EJ, Saether B-E. 2016. Home ranges, habitat and body mass: simple correlates of home range size in ungulates. Proc Roy Soc B 283. DOI:10.1098/rspb.2014.1234.
  • Patton JL, Yang SY. 1977. Genetic variation in Thomomys bottae pocket gophers: macrogeographic patterns. Evolution. 31:697–720.10.1111/evo.1977.31.issue-4
  • Peláez-Campomanes P, Martin RA. 2005. The Pliocene and Pleistocene history of cotton rats in the Mede Basin of southwestern Kansas. J Mammal. 86:475–494.10.1644/1545-1542(2005)86[475:TPAPHO]2.0.CO;2
  • Peters RH. 1983. The ecological implications of body size. New York (NY): Cambridge U. Press.10.1017/CBO9780511608551
  • Prothero DR. 2014. Species longevity in North American fossil mammals. Int Zool. 9:383–393.10.1111/1749-4877.12054
  • Prothero DR, Heaton TH. 1996. Faunal stability during the Early Oligocene climatic crash. Palaeogeog Palaeoclimat Palaeoecol. 127:239–256.
  • Raia P, Carotenuto F, Eronen JT, Fortelius M. 2011. Longer in the tooth, shorter in the record? The evolutionary correlates of hypsodonty in Neogene ruminants. Proc Roy Soc B. 278:3474–3481.10.1098/rspb.2011.0273
  • Raia P, Carotenuto F, Fulgione D, Fortelius M. 2012. Ecological specialization in fossil mammals explains Cope’s rule. Am Nat. 179:328–337.10.1086/664081
  • Raia P, Carotenuto F, Mondanaro A, Passaro F, Saggese F, Melchionna M, Serio C, Alessio L, Silvestro D, Forelius M. 2016. Progress to extinction: increased spesialisation causes the demise of animal clades. Nat Sci Rep. DOI:10.1038/srep30965.
  • Rosenzweig ML. 1995. Species diversity in space and time. New York (NY): Cambridge U. Press.10.1017/CBO9780511623387
  • Secord R, Bloch JI, Chester JB, Boyer DM, Wood AR, Wing L, Kraus MJ, McInerney FA, Krigbaum J. 2012. Evolution of the earliest horses driven by climate change in the Paleocene-Eocene thermal maximum. Science. 335:959–962.10.1126/science.1213859
  • Semken HA Jr. 1966. Stratigraphy and paleontology of the McPherson Equus beds (Sandahl local fauna), McPherson County, Kansas. Contribs Mus Paleontol U Michigan. 20:121–178.
  • Sibly RM, Brown JH. 2007. Effects of body size and lifestyle on evolution of mammal life histories. Proc Nat Acad Sci. 104:17702–17712.
  • Smith FA, Brown JH, Haskell JP, Lyons SK, Alroy J, Charnov EL, DayanT Enquist BJ, Morgan Ernest SK, Hadly EA, et al. 2004. Similarity of mammalian body size across the taxonomic hierarchy and across space and time. Am Nat. 163:672–691.10.1086/382898
  • Stanley SM. 1973. An explanation for Cope’s rule. Evolution. 27:1–26.10.1111/evo.1973.27.issue-1
  • Stanley SM. 1975. A theory of selection above the species level. Proc Nat Acad Sci. 72:646–650.10.1073/pnas.72.2.646
  • Tedford RH, Wang X. 2009. Phylogenetic systematics of the North American Caninae (Carnivora: Canidae). Bull Am Mus Nat Hist. 325:1–218.10.1206/574.1
  • Tomiya S. 2013. Body size and extinction risk in terrestrial mammals above the species level. Am Nat. 182:E196–E214.10.1086/673489
  • Turvey ST, Fritz SA. 2011. The ghosts of mammals past: biological and geographical patterns of global mammalian extinction across the Holocene. Phil Trans Biol Sci. 366:2564–2576.10.1098/rstb.2011.0020
  • Van Valen L. 1973. A new evolutionary law. Ev Theory. 1:1–30.
  • Van Valkenburgh B. 1990. Skeletal and dental predictors of body mass in carnivores. In: Damuth J, MacFadden BJ, editors. Body size in mammalian paleobiology: estimation and biological implications. New York (NY): Cambridge U. Press; p. 181–206.
  • Van Valkenburgh B. 1991. Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators. Paleobiology. 17:340–362.10.1017/S0094837300010691
  • Van Valkenburgh B, Wang X, Damuth J. 2004. Cope’s rule, hypercarnivory, and extinction in North American canids. Science. 306:101–104.10.1126/science.1102417
  • Voss RS. 1992. A revision of the South American species of Sigmodon (Mammalia: Muridae) with notes on their natural history and biogeography. Am Mus Novs. 3050:1–56.
  • Wang X. 1994. Phylogenetic systematics of the Hesperocyoninae (Carnivora: Canidae). Bull Am Mus Nat Hist. 221:1–207.
  • Wang X, Tedford RH, Taylor BE. 1999. Phylogenetic systematics of the Borophaginae (Carnivora: Canidae). Bull Am Mus Nat Hist. 243:1–391.
  • Werdelin L, Yamaguchi N, Johnson WE, O’Brien SJ. 2010. Phylogeny and evolution of cats (Felidae). In: MacDonald DW, Loveridge AJ, editors. Biology and conservation of wild felids. Oxford: Oxford U. Press; p. 59–82.
  • Wollenberg KC, Vieites DR, Glaw F, Vences M. 2011. Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs. BMC Ev Biol. DOI:10.1186/1471-2148-11-217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.