Publication Cover
Historical Biology
An International Journal of Paleobiology
Volume 31, 2019 - Issue 4: SI: Cave Bear
558
Views
11
CrossRef citations to date
0
Altmetric
Articles

A three-dimensional analysis of tooth-root morphology in living bears and implications for feeding behaviour in the extinct cave bear

, , , , ORCID Icon, , & ORCID Icon show all
Pages 461-473 | Received 20 Jul 2018, Accepted 14 Sep 2018, Published online: 11 Oct 2018

References

  • Abel O, Kyrle G. 1931. Die Drachenhöhle bei Mixnitz. Speläol Monogr. 7–9. 953pp. Wien.
  • Andrews P, Turner A. 1992. Life and death of the Westbury bears. Ann Zool Fennici. 28(3–4):139–149.
  • Astúa D. 2009. Evolution of scapula size and shape in didelphid marsupials (Didelphimorphia: Didelphidae). Evolution. 63(9):2438–2456.
  • Bocherens H, Drucker DG, Billiou D, Geneste JM, Van Der Plicht J. 2006. Bears and Humans in Chauvet Cave (Vallon-Pont-d’Arc. Ardèche France): insights stable isotopes radiocarbon dating bone collagen. J Hum Evol. 50(3):370-376.
  • Bocherens H, Stiller M, Hobson KA, Pacher M, Rabeder G, Burns JA, Hofreiter M 2011. Niche partitioning between two sympatric genetically distinct cave bears (Ursus spelaeus and Ursus ingressus) and brown bear (Ursus arctos) from Austria: isotopic evidence from fossil bones. Quatern Int. 245(2):238–248.
  • Bocherens H. 2018. Isotopic insights on cave bear palaeodiet. Hist Bio. doi:10.1080/08912963.2018.1465419
  • Bocherens H, Billiou D, Patou-Mathis M, Otte M, Bonjean D, Toussaint M, Mariotti A. 1999. Palaeoenvironmental and Palaeodietary Implications of Isotopic Biogeochemistry of Late Interglacial Neandertal and Mammal Bones in Scladina Cave (Belgium). J Archaeol Sci. 26:599–607.
  • Bocherens H, Mariotti A. 1997. Comments on: Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen isotope biochemistry: Implications for Pleistocene bears by Bocherenset al. -Repy Palaeogeogr Palaeocl 128:362–364.
  • Christiansen P. 2008. Evolution of skull and mandible shape in cats (Carnivora: Felidae). PLoS One. 3(7):e2807.
  • Christiansen P, Wroe S. 2007. Bite forces and evolutionary adaptations to feeding ecology in carnivores. Ecology. 88(2):347–358.
  • DeMaster DP, Stirling I. 1981. Ursus maritimus. Polar bear. Mamm Sp. 145:1–7.
  • Derocher AE, Andersen M, Wiig Ø, Aars J. 2010. Sexual dimorphism and the mating ecology of polar bears (Ursus maritimus) at Svalbard. Behav Ecol Sociobiol. 64(6):939-946.
  • Diedrich CG. 2012. An Ice Age spotted hyena Crocuta crocuta spelaea (Goldfuss 1823) population, their excrements and prey from the late Pleistocene hyena den of the Sloup Cave in the Moravian Karst, Czech Republic. Hist Biol. 24(2):161–185.
  • Döppes D, Pacher M, Rabeder G, Lindauer S, Freidrich R, Kromer B, Rosendahl W. 2016. Unexpected! New AMS dating from Austrian cave bear sites. Cranium. 33:26–30.
  • Döppes D, Rabeder G, Frischauf C, Kavcik-Graumann N, Kromer B, Lindauer S, Friedrich R, Rosendahl W. 2018. Extinction pattern of Alpine cave bears - new data and climatological interpretation. Hist Biol. doi:10.1080/08912963.2018.1487422
  • Döppes D, Rabeder G, Stiller M. 2011. Was the Middle Würmian in the High Alps warmer than today? Quatern Int. 245(2):193–200.
  • Döppes D, Rosendahl W. 2009. Numerically dated palaeontological cave sites of Alpine region from Late Middle Pleistocene to Early Late Pleistocene. Preistoria Alpina. 44:45–48.
  • Ehrenberg K. 1929. Die Ergebnisse der Ausgrabungen in der Schreiberwandhöhle am Dachstein. Paläont Z. 11(3):261–268.
  • Figueirido B, Palmqvist P, Pérez-Claros JA. 2009. Ecomorphological correlates of craniodental variation in bears and paleobiological implications for extinct taxa: An approach based on geometric morphometrics. J Zool. 277:70–80.
  • Figueirido B, Serrano-Alarcón FJ, Slater GJ, Palmqvist P. 2010. Shape at the cross-roads: homoplasy and history in the evolution of the carnivoran skull towards herbivory. J Evolution Biol. 23(12):2579–2594.
  • Figueirido B, Soibelzon LH. 2010. Inferring palaeoecology in extinct tremarctine bears (Carnivora, Ursidae) using geometric morphometrics. Lethaia. 43(2):209–222.
  • Figueirido B, Tseng ZJ, Martín-Serra A. 2013. Skull shape evolution in durophagous carnivorans. Evolution. 67(7):1975–1993.
  • Fortes GG, Grandal-d’Anglade A, Kolbe B, Fernandes D, Meleg IN, García-Vázquez A, Frischauf C. 2016. Ancient DNA reveals differences in behaviour and sociality between brown bears and extinct cave bears. Mol Ecol. 25(19):4907–4918.
  • Frischauf C, Liedl P, Rabeder G. 2014. Revision der fossilen Fauna der Drachenhöhle (Mixnitz, Steiermark). Die Höhle. 66(1–4):47–55.
  • García N, Arsuaga JL, Torres T. 1997. The carnivore remains from the Sima de los Huesos Middle Pleistocene site (Sierra de Atapuerca, Spain). J Hum Evol. 33(2–3):155–174.
  • García N, Santos E, Arsuaga JL, Carretero JM. 2006. High-resolution X-ray computed tomography applied to the study of some endocranial traits in cave and brown bears. Scientific Annals School of Geology Aristotle University of Thessaloniki. 98:(141–146):141.
  • Gidaszewski NA, Baylac M, Klingenberg CP. 2009. Evolution of sexual dimorphism of wing shape in the Drosophila melanogaster subgroup. BMC Evol Biol. 9(1):110.
  • Grandal-d’Anglade A, López-González F. 2005. Sexual dimorphism and ontogenetic variation in the skull of the cave bear (Ursus spelaeus Rosenmüller) of the European Upper Pleistocene. Geobios. 38(3):325-337.
  • Grandal-d’Anglade A. 2010. Bite force of the extinct Pleistocene Cave bear Ursus spelaeus Rosenmüller from Europe. Comptes Rendus Palevol. 9(1–2):31-37.
  • Grandal-d’Anglade A, Pérez-Rama M, García-Vázquez A, González-Fortes GM. 2018. The cave bear’s hibernation: reconstructing the physiology and behaviour of an extinct animal. Hist Biol. doi:10.1080/08912963.2018.1468441
  • Hofreiter M, Münzel S, Conard N, Pollack J, Weiss G, Pääbo S. 2007. Sudden replacement of cave bear mitochondrial DNA in the Late Pleistocene. Curr Biol. 17(4):R122–R123.
  • Hofreiter M, Rabeder G, Jaenicke V, Withalm G, Nagel D, Paunovic M, Jambrsi G, Pääbo S. 2004. Evidence for reproductive isolation between cave bear populations. Curr Biol 14(1):40–43.
  • Horacek M, Frischauf C, Pacher M, Rabeder G. 2012. Stable isotopic analyses of cave bear bones from the Conturines cave (2800 m, South Tyrol, Italy). Braunschweiger Naturkundliche Schriften. 11(1):47–52.
  • Kadlec J, Hercman H, Beneš V, Šroubek P, J F D, Granger D. 2001. Cenozoic history of the Moravian Karst (northern segment): cave sediments and karst morphology. Acta Mus Moraviae Sci geol. 86:111–160.
  • Ø H, Harper DAT, Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron. 4:9.
  • Kavcik-Graumann N, Nagel D, Rabeder G, Ridush B, Withalm G 2016. The bears of Illinka cave near Odessa (Ukraine). In: Cranium. ICBS Proceedings. 1–25.
  • Kikinis R, Pieper SD, Vosburgh K. 2014. 3D Slicer: a platform for subject-specific image analysis. visualization. and clinical support. Intraoperative Imaging Image-Guided Therapy. Ferenc A Jolesz Editor. 3(19):277–289.
  • Klingenberg CP, Gidaszewski NA. 2010. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Systematic Biol. 59(3):245–261.
  • Knapp M. 2018. From a molecules’ perspective – contributions of ancient DNA research to understanding cave bear biology. Hist Bio. doi:10.1080/08912963.2018.1434168
  • Knapp M, Rohland N, Weinstock J, Baryshnikov G, Sher A, Nagel D, Hofreiter M. 2009. First DNA sequences from Asian cave bear fossils reveal deep divergences and complex phylogeographic patterns. Mol Ecol. 18(6):1225-1238.
  • Krause J, Unger T, Noçon A, Malaspinas AS, Kolokotronis SO, Stiller MBray SC. 2008. Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary. BMC Evol Biol. 8(1):220.
  • Kupczik K, Dean MC. 2008. Comparative observations on the tooth root morphology of Gigantopithecus blacki. J Hum Evol. 54(2):196–204.
  • Kupczik K, Hublin JJ. 2010. Mandibular molar root morphology in Neanderthals and Late Pleistocene and recent Homo sapiens. J Hum Evol. 59(5):525–541.
  • Kupczik K, Stynder DD. 2012. Tooth root morphology as an indicator for dietary specialisation in carnivores (Mammalia: Carnivora). Biol J Linn Soc. 105(2):456–471.
  • Kurtén B. 1955. Sex dimorphism and size trends in the cave bear, Ursus spelaeus Rosenmüller and Heinroth. Acta Zool. Fennica. 90:1-48.
  • Kurtén B. 1967. Pleistocene bears of North America. II: Genus Arctodus. short-faced bears. Acta Zool. Fennica. 117:1–60.
  • Maddison WP. 1991. Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Systematic Biology. 40(3):304–314.
  • Maddison WP, Maddison DR. 2018. Mesquite: a modular system for evolutionary analysis. Version 3.51 http://www.mesquiteproject.org.
  • Martín-Serra A, Figueirido B, Palmqvist P. 2014a. A three-dimensional analysis of morphological evolution and locomotor performance of the carnivoran forelimb. PLoS One. 9(1):e85574.
  • Martín-Serra A, Figueirido B, Palmqvist P. 2014b. A three-dimensional analysis of the morphological evolution and locomotor behaviour of the carnivoran hind limb. BMC Evol Biol. 14(1):129.
  • Mattson DJ. 1998. Diet and morphology of extant and recently extinct northern bears. Ursus. 10:479–496.
  • Nagel D, Lindenbauer J, Kavcik-Graumann N, Rabeder G. 2018 (in press). Subtropical steppe inhabitants in the Late Pleistocene cave faunas of eastern Middle Europe. Slovensk: Kras -Acta Carsologica Slovaka.
  • Pacher M, Stuart AJ. 2009. Extinction chronology and palaeobiology of the cave bear (Ursus spelaeus). Boreas. 38(2):189-206.
  • Peigné S, Merceron G. 2017. Palaeoecology of cave bears as evidenced by dental wear analysis: a review of methods and recent findings. Hist Biol. 1–13.
  • Peigné S, Goillot C, Germonpré M, Blondel C, Bignon O, Merceron G. 2009. Predormancy omnivory in European cave bears evidenced by a dental microwear analysis of Ursus spelaeus from Goyet, Belgium. P Natl Acad Sci. 106(36):15390-15393.
  • Pérez-Rama M, Fernández-Mosquera D, Grandal-d’Anglade A. 2011. Effects of hibernation on the stable isotope signatures of adult and neonate cave bears. Quaternaire. 4:79–88.
  • Pinto Llona AC, Andrews PJ, Etxebarría F. 2005. Taphonomy and Palaeoecology of Quaternary Bears from Cantabrian Spain. Oviedo: Fundación Oso de Asturias.
  • Polly PD, MacLeod N. 2008. Locomotion in fossil Carnivora: an application of eigensurface analysis for morphometric comparison of 3D surfaces. Palaeontol Electron. 11(2):10–13.
  • Quilès J, Petrea C, Moldovan O, Zilhão J, Rodrigo R, Rougier H, Trinkaus E. 2006. Cave bears (Ursus spelaeus) from the Peştera cu Oase (Banat, Romania): Paleobiology and taphonomy. C R Palevol. 5(8):927-934.
  • Rabeder G, Debeljak I, Hofreiter M, Withalm G. 2008. Morphological responses of cave bears (Ursus spelaeus group) to high-alpine habitats. Die Höhle. 59:59–72.
  • Rabeder G, Hofreiter M. 2004. Der neue Stammbaum der alpinen Höhlenbären. Die Höhle. 55(1–4):58–77.
  • Rabeder G, Hofreiter M, Nagel D, Withalm G. 2004a. New taxa of alpine cave bears (Ursidae, Carnivora). Cahiers scientifiques Hors série. 2:49–67.
  • Rabeder G, Hofreiter M, Withalm G. 2004b. The Systematic Position of the Cave Bear from Potočka zijalka (Slovenia). Mitt Komm Quartärforsch Österr Akad. Wiss.13:197–200.
  • Richards MP, Pacher M, Stiller M, Quilès J, Hofreiter M, Constantin S, Trinkaus E. 2008. Isotopic evidence for omnivory among European cave bears: Late Pleistocene Ursus spelaeus from the Peştera cu Oase, Romania. Proc Natl Acad Sci. 105(2):600-604.
  • Robu M, Wynn JG, Mirea IC, Petculescu A, Kenesz M, Puşcaş CM, Vlaicu M, Trinkaus E, Constantin S, O’Regan H. 2018. The diverse dietary profiles of MIS 3 cave bears from the Romanian Carpathians: insights from stable isotope (δ13C and δ15N) analysis. Palaeontology. 61:209–219.
  • Sacco T, Van Valkenburgh B. 2004. Ecomorphological indicators of feeding behaviour in the bears (Carnivora: Ursidae). J Zoo. 263(1):41–54.
  • Schulz E, Piotrowski V, Clauss M, Mau M, Merceron G, Kaiser TM. 2013. Dietary Abrasiveness Is Associated with Variability of Microwear and Dental Surface Texture in Rabbits. PLoS ONE. 8(2):e56167.
  • Self CJ. 2015a. Dental root size in bats with diets of different hardness. J Morphol. 276(9):1065–1074.
  • Self CJ. 2015b. Cricetid rodents: Is molar root morphology an indicator of diet?. Zoomorphology. 134(2):309–316.
  • Spencer MA. 2003. Tooth-root form and function in platyrrhine seed-eaters. Am J Phys Anthropol.122. (4):325–335.
  • Spötl C, Reimer PJ, Rabeder G, Ramsey CB. 2018. Radiocarbon constraints on the age of the world’s highest-elevation cave-bear population, Conturines Cave (Dolomites, Northern Italy). Radiocarbon. 60(1):299–307.
  • Stiller M, Molak M, Prost S, Rabeder G, Baryshnikov G, Rosendahl W, Germonpré M. 2014. Mitochondrial DNA diversity and evolution of the Pleistocene cave bear complex. Quatern Int. 339:224-231.
  • Stynder DD, Kupczik K. 2013. Tooth root morphology in the early Pliocene African bear Agriotherium africanum (Mammalia. Carnivora. Ursidae) and its implications for feeding ecology. J Mammal Evol. 20(3):227–237.
  • Terlato G, Bocherens H, Romandini M, Nannini N, Hobson KA, Peresani M. 2018. Chronological and Isotopic data support a revision for the timing of cave bear extinction in Mediterranean Europe. Hist Bio. doi:10.1080/08912963.2018.1448395
  • Thomason JJ. 1991. Cranial strength in relation to estimated biting forces in some mammals. Can J Zool. 69:2326–2333.
  • Van Heteren AH, Arlegi M, Santos E, Arsuaga JL, Gómez-Olivencia A. 2018. Cranial and mandibular morphology of Middle Pleistocene cave bears (Ursus deningeri): implications for diet and evolution. Historical Biology. doi:10.1080/08912963.2018.1487965
  • Van Heteren AH, MacLarnon A, Rae TC, Soligo C. 2009. Cave bears and their closest living relatives: a 3D geometric morphometrical approach to the functional morphology of the cave bear Ursus spelaeus. Slovenský Kras Acta Carsologica Slovaca. 47(supplement1):33–46.
  • Van Heteren AH, MacLarnon AM, Soligo C, Rae TC. 2012. 3D geometric morphometrical analyses of intraspecific variation in the mandible of Ursus spelaeus from the Alpine region. Braunschweiger Naturkundliche Schriften. 11:111–128.
  • Van Heteren AH, MacLarnon AM, Soligo C, Rae TC. 2014. Functional morphology of the cave bear (Ursus spelaeus) cranium: a three-dimensional geometric morphometric analysis. Quatern Int. 339–340:209–216.
  • Van Heteren AH, MacLarnon AM, Soligo C, Rae TC. 2016. Functional morphology of the cave bear (Ursus spelaeus) mandible: a 3D geometric morphometric analysis. Org Divers Evol. 16:299–314.
  • Veitschegger K, Kolb C, Amson E, Sánchez-Villagra MR. 2018. Longevity and life history of cave bears – a review and novel data from tooth cementum and relative emergence of permanent dentition. Hist Bio. doi:10.1080/08912963.2018.1441293
  • Vila Taboada M, Fernández Mosquera D, López González F, Grandal D’Anglade A, Vidal Romaní JR. 1999. Paleoecological implications inferred from stable isotopic signatures (d13C. d15N) in bone collagen of Ursu spelaus ROS.-HEIN. Cadernos do Laboratori Xeolxic deLax. 24:73–87.
  • Wong ST. 2002. Food habits of malayan sun bears in lowland tropical forest of Borneo. Ursus. 13:127–136.
  • Xia J, Zheng J, Huang D, Tian ZR, Chen L, Zhou Z, Qian L. 2015. New model to explain tooth wear with implications for microwear formation and diet reconstruction. Proc Natl Acad Sci. 112(34):10669-10672.
  • Yuan B, Khechoyan D, Goldman R 2015. A new objective automatic computational framework for evaluating and visualizing the results of infant cranial surgery. Paper presented at: ASE International Conference on Biomedical Computing., Dec. 14–16; Harvard University, Cambridge, USA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.