Publication Cover
Historical Biology
An International Journal of Paleobiology
Volume 33, 2021 - Issue 2
244
Views
13
CrossRef citations to date
0
Altmetric
Articles

Characterising leopard as taphonomic agent through the use of micro-photogrammetric reconstruction of tooth marks and pit to score ratio

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 176-185 | Received 03 Oct 2018, Accepted 19 Mar 2019, Published online: 02 Apr 2019

References

  • Adams DC, Otárola-Castillo E. 2013. Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol Evol. 4(4):393–399.
  • Andrés M, Gidna A, Yravedra J, Domínguez-Rodrigo M. 2012. A study of dimensional differences of tooth marks (pits and scores) on bones modified by small and large carnivores. Archaeol Anthropol Sci. 4:209–219.
  • Andrews P. 2008. Cetaceans from a possible striped hyaena Den Site in Qatar. J Taphonomy. 6(3–4):255–274.
  • Aramendi J, Maté-González MÁ, Yravedra J, Ortega MC, Arriaza MC, González-Aguilera D, Baquedano E, Domínguez-Rodrigo M. 2017. Discerning carnivore agency through the three-dimensional study of tooth pits: revisiting crocodile feeding behaviour at FLK- Zinj and FLK NN3 (Olduvai Gorge, Tanzania). Palaeogeogr Palaeoclimatol Palaeoecol. 488:93–102.
  • Arilla M, Rosell J, Blasco R, Domínguez-Rodrigo M, Pickering TR. 2014. The “bear” essentials: actualistic research on Ursus arctos arctos in the Spanish Pyrenees and its implications for paleontology and archaeology. PLoS One. 9(7):e102457. doi:10.1371/journal.pone.010245.
  • Arriaza MC, Organista E, Yravedra J, Santonja M, Baquedano E, Domínguez-Rodrigo M. 2018. Striped hyenas as bone modifiers in dual human-to-carnivore experimental models. Archaeol Anthropol Sci. 1–13. doi:10.1007/s12520-018-0747-y.
  • Arriaza MC, Yravedra J, Domínguez-Rodrigo M, Mate-González MA, García Vargas E, Palomeque-González JF, Aramendi J, González-Aguilera D, Baquedano E. 2017. On applications of micro-photogrammetry and geometric morphometrics to studies of tooth mark morphology: the modern Olduvai Carnivore Site (Tanzania). Palaeogeogr Palaeoclimatol Palaeoecol. 488:103–112.
  • Bartram LE, Marean CW. 1999. Explaining the “Klasies Pattern”: Kua ethnoarchaeology, the Die Kelders Middle Stone Age archaeofauna, long bone fragmentation and carnivore ravaging. J Archaeol Sci. 26:9–29.
  • Bearder SK. 1977. Feeding habits of spotted hyaenas in a woodland habitat. Afr J Ecol. 15:263–280.
  • Binford LR. 1981. Bones ancient men and modern myths. New York: New York Academic Press.
  • Binford LR. 1984. Faunal remains from Klasies River Mouth. Orlando (Florida): Academic Press.
  • Blumenschine RJ. 1986. Early hominid scavenging opportunities. Implications of carcass availability in the Serengeti and Ngorongoro ecosystems. British Archaeological Reports. International Series, 283. Oxford.
  • Blumenschine RJ. 1988. An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. J Archaeol Sci. 15:483–502.
  • Blumenschine RJ. 1995. Percussion marks, tooth marks and the experimental determinations of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. J Hum Evol. 29:21–51.
  • Blumenschine RJ, Cavallo JA. 1992. Carroñeo y evolución humana, en Libros de Investigación y Ciencia. Orígenes del Hombre Moderno, introducción y selección de Jaume Bertrampetit. p. 90–97.
  • Blumenschine RJ, Cavallo JA, Capaldo SD. 1994. Competition for carcasses and early hominid behavioral ecology: a case study and conceptual framework. J Hum Evol. 27:197–213.
  • Blumenschine RJ, Marean CW, Capaldo SD. 1996. Blind tests of inter-analyst correspondence and accuracy in the identification of cut marks, percussion marks, and carnivore tooth marks on bone surfaces. J Archaeol Sci. 23:493–507.
  • Bookstein FL. 1989. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell. 11:567–585.
  • Bookstein FL. 1991. Morphometric tools for landmark data: geometry and biology. New York: Cambridge University Press.
  • Brain CK. 1981. The hunters or the hunted? An introduction to African cave taphonomy. Chicago: Chicago University Press.
  • Bunn HT 1982. Meat-eating and human evolution: studies on the diet and subsistence patterns of Plio-Pleistocene hominids in East Africa [ Ph.D. Dissertation]. Berkeley: University of California.
  • Bunn HT. 1983. Comparative analysis of modern bone assemblages from a San huntergatherer camp in the Kalahari Desert, Botswana, and from a spotted hyena den near Nairobi, Kenya. In: Clutton-Brock J, Grigson C, editors. Animals and archaeology. Volume I: hunters and their prey. BAR International Series 283. Oxford: British Archaeological Reports; p. 143–148.
  • Bunn HT, Kroll EM, Ambrose SH, Behrensmeyer AK, Binford LR, Blumenschine RJ, Klein RG, McHenry HM, O’Brien CJ, Wymer JJ. 1986. Systematic butchery by Plio/Pleistocene Hominids at Olduvai Gorge, Tanzania [and Comments and Reply]. Curr Anthropol. 27:431–452.
  • Campmas E, Beauval C. 2008. Consommation osseuse des carnivores: résultats de l’étude de l’exploitation de carcasses de bœufs (Bos taurus) par des loups captifs. Ann Paleontol. 94:167–186.
  • Cavallo JA, Blumenschine RJ. 1989. Tree-stored leopard kills: expanding the hominid scavenging niche. J Hum Evol. 18:393–399.
  • Core-Team, R. 2015. A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. https://www.Rproject.org/.
  • Courtenay LA, Yravedra Y, Huguet R, Aramendi J, Maté-González M, González-Aguilera D, Arriaza MC. 2019. Combining machine learning algorithms and geometric morphometrics: a study of carnivore tooth marks. Palaeogeogr Palaeoclimatol Palaeoecol. 522:28–39.
  • Dawkins WB. 1863. Wookey Hole hyaena den. Proc Somersetshire Archaeol Nat Hist Soc. 11(2):197–219.
  • Dawkins WB. 1874. Cave hunting research of the evidence of caves respecting the early inhabitants of Europe Early Man in Britain. London: Macmillian & Co.
  • Delaney-Rivera C, Plummer TW, Hodgson JA, Forrest F, Hertel F, Oliver JS. 2009. Pits and pitfalls: taxonomic variability and patterning in tooth mark dimensions. J Archaeol Sci. 36:2597–2608.
  • Domínguez Rodrigo M. 1997. Meat eating by early homids at FLK Zinj 22 Site, Olduvai Gorge Tanzania: an experimental a roach using cut-mark data”. J Hum Evol. 33:669–690.
  • Domínguez Rodrigo M. 2002. Hunting and scavenging by early humans: the state of debate. World Archaeol. 16:1–54.
  • Domínguez-Rodrigo M. 1999. Flesh availability and bone modification in carcasses consumed by lions. Palaeogeogr Palaeoclimatol Palaeoecol. 149:373–388.
  • Domínguez-Rodrigo M, Egeland CP, Pickering TR. 2007b. Equifinality in carnivore tooth marks and the extended concept of archaeological palimpsests: implications for models of passive scavenging by hominids. In: Pickering TR, Schick K, Toth N, editors. Breathing life into fossils: taphonomic studies in honor of C.K. (Bob) Brain. Bloomington: Stone Age Institute Press; p. 255–267.
  • Domínguez-Rodrigo M, Barba R, Egeland CP. 2007a. Deconstructing Olduvai. A taphonomic study of the Bed I sites. The Netherlands: Springer Books, Dordrecht.
  • Domínguez-Rodrigo M, Bunn HT, Yravedra J. 2014. A critical re-evaluation of bone surface modification models for inferring fossil hominin and carnivore interactions through a multivariate approach: application to the FLK Zinj archaeofaunal assemblage (Olduvai Gorge, Tanzania). Quat Int. 322–323:32–43.
  • Domínguez-Rodrigo M, Gidna A, Yravedra J, Musiba C. 2012. A comparative neotaphonomic study of felids, hyenids and canids: an analogical framework based on long bone modification patterns. J Taphonomy. 10:147–164.
  • Domínguez-Rodrigo M, Piqueras A. 2003. The use of tooth pits to identify carnivore taxa in tooth-marked archaeofaunas and their relevance to reconstruct hominid carcass processing behaviours. J Archaeol Sci. 30:1385–1391.
  • Domínguez-Rodrigo M, Yravedra J, Organista E, Gidna A, Fourvel JB, Baquedano E. 2015. A new methodological approach to the taphonomic study of paleontological and archaeological faunal assemblages: a preliminary case study from Olduvai Gorge (Tanzania). J Archaeol Sci. 59:35–53.
  • Dryden IL, Mardia KV. 2016. Statistical shape analysis, with applications in R. 2nd ed. Wiley Series in Probability and Statistics. Chichester: John Wiley and Sons; p. 496.
  • Egeland A, Egeland CP, Bunn HT. 2008. Taphonomic analysis of a modern spotted hyena (Crocuta crocuta) den from Nairobi, Kenya. J Taphonomy. 6:275–299.
  • Fosse P, Avery G, Fourvel JB, Lesur-Gebremariam J, Monchot H, Brugal JP, Kolska Horwitz L, Tournepiche JF. 2010. Los cubiles actuales de hiena: sintesis criteria de sus caracteristicas tafonomicas a partir de la excavacion de nuevos yacimientos (Republica de Djibuti, Africa del Sur) y la informacion publicada. In: Rosell J, Baquedano E, editors. Actas de la Primera Reunion de cientificos sobre cubiles de hiena (y otros grandes carnivoros) en los yacimientos arqueologicos de la Peninsula Iberica. Museo Arqueologico Regional de la Comunidad de Madrid, Alcala de Henares (Madrid); p. 108–117.
  • Fourvel JP, Fosse P, Avery G. 2015. Spotted, striped or brown? Taphonomic studies at dens of extant hyaenas in eastern and southern Africa. Quat Int. 369:38–50.
  • Gidna A, Yravedra J, Domínguez Rodrigo M. 2013. A cautionary note on the use of captive carnivores to model wild predator behavior: a comparison of bone modification patterns on long bones by captive and wild lions. J Archaeol Sci. 40:1903–1910.
  • Gidna AO, Kisui B, Mabulla A, Musiba C, Domínguez-Rodrigo M. 2014. An ecological neo-taphonomic study of carcass consumption by lions in Tarangire National Park (Tanzania) and its relevance for human evolutionary biology. Quat Int. 322–323:167–180.
  • González-Aguilera D, López-Fernández L, Rodríguez-González P, Guerrero-Sevilla D, Hernández-López D, Menna F, Nocerino E, Toschi I, Remondino F, Ballabeni A, et al. 2016. InteGRAted PHOtogrammetric Suite, GRAPHOS. Congress: CATCON7-ISPRS; Jul 12–19; Prague, Czech Republic.
  • Hall BK. 2003. Descent with modification: the unity underlying homology and homoplasy as seen through an analysis of development and evolution. Biol Rev. 78:409–433.
  • Haynes G. 1983. A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones. Paleobiology. 9:164–172.
  • Henschel JR, Tilson R, von Blottnitz F. 1979. Implications of a spotted hyaena bone assemblage in the Namib Desert. S Afr Archaeol Bull. 34:127–l31.
  • Hervé M 2018. RVAideMemoire: testing and plotting procedures for biostatistics. R package version 0.9-69-3. https://cran.r-project.org/web/packages/RVAideMemoire/index.html.
  • Hill A. 1983. Hyenas and early hominids. In: Clutton-Brock J, Grigson C, editors. Animals and archaeology. Volume I: hunters and their prey. BAR International Series 283. Oxford: British Archaeological Reports; p. 87–92.
  • Horn M 2018. Micro-photogrammetric and geometric morphometric reconstructions of carnivore tooth marks. Unpublished Honours report. Johannesburg: University of the Witwatersrand.
  • Klein RG. 1982. Age (mortality) profiles as a means of distinguishing hunted species from scavenged ones in Stone Age archaeological sites. Paleobiology. 8:151–158.
  • Klein RG, Cruz-Uribe K, Milo RG. 1999. Skeletal part representation in archaeofaunas: comments on “explaining the ‘Klasies Pattern’: Kua ethnoarchaeology, the Die Kelders Middle Stone Age archaeofauna, long bone fragmentation and carnivore ravaging” by Bartram & Marean. J Archaeol Sci. 26:1225–1234.
  • Klingenber CP. 2008. Novelty and “homology-free” morphometrics: what’s in a name? Evol Biol. 35:186–190.
  • Korkmaz S, Goksuluk D, Zararsiz G. 2014. MVN: an R package for assessing multivariate normality. R J. 6(2):151–162.
  • Kruuk H. 1972. The spotted hyena: a study of predation and social behavior. Chicago: Chicago University Press.
  • Kruuk H. 1976. Feeding and social behaviour of the striped hyaena (Hyaena vulgaris Desmarest). Afr J Ecol. 14:91–111.
  • Kuhn B, Berger L, Skinner JD. 2010. Examining criteria for identifying and differentiating fossil faunal assemblages accumulated by hyenas and hominins using extant hyenid accumulations. Int J Osteoarchaeol. 20:15–35.
  • Lê S, Josse J, Husson F. 2008. FactoMineR: an R package for multivariate analysis. J Stat Softw. 25(1):1–18.
  • Lam YM. 1992. Variability in the behaviour of spotted hyaenas as taphonomic agents. J Archaeol Sci. 19:389–406.
  • Leakey M. 1971. Olduvai Gorge Volumen 3. Excavations in Bed I and II, 1960–1963. Cambridge: Cambridge University Press; p. 306.
  • Marean CW, Spencer LM. 1991. Impact of carnivore ravaging on zooarchaeological measures of element abundance. Am Antiq. 56:645–658.
  • Marean CW, Spencer LM, Blumenschine RJ, Capaldo S. 1992. Captive hyaena bone choice and destruction, the Schlepp effect and Olduvai archaeofaunas. J Archaeol Sci. 19:101–121.
  • Maté-González MÁ, Aramendi J, González-Aguilera D, Yravedra J. 2017. Statistical comparison between low-cost methods for 3D characterization of cut-marks on bones. Rem Sens. 9(9):873.
  • Maté-González MA, Yravedra J, González-Aguilera D, Palomeque-González JF, Domínguez-Rodrigo M. 2015. Micro-photogrammetric characterization of cut marks on bones. J Archaeol Sci. 62:128–142.
  • Mills MGL, Mills MGJ. 1977. An analysis of bones collected at hyaena breeding dens in the Gemsbok national Parks (Mammalia: Carnivora). Annls Transv Mus. 30(14):145–155.
  • O’Higgins P, Johnson DR. 1988. The quantitative description and comparison of biological forms. Critical Reviews in Anatomical Sciences. 1:149–170.
  • Outram AK. 2000. Hunting meat and scavenging marrow? A seasonal explanation for Middle Stone Age subsistence at Klasies River Mouth. In: Rowley- Conwy P, editor. Animal bones and human societies. Oxford: Oxbow books; p. 20–27.
  • Owens MJ, Owens DD. 1978. Feeding ecology and its influence on social organization in Brown hyenas (Hyaena brunnea, Thunberg) of the Central Kalahari Desert. Afr J Ecol. 16:113–135.
  • Parkinson J. 2018. Revisiting the hunting-versus-scavenging debate at FLK Zinj: a GIS spatial analysis of bone surface modifications produced by hominins and carnivores in the FLK 22 assemblage, Olduvai Gorge, Tanzania. Palaeogeogr Palaeoclimatol Palaeoecol. 511:29–51.
  • Parkinson J, Plummer T, Hartstone-Rose A. 2015. Characterizing felid tooth marking and gross bone damage patterns using GIS image analysis: an experimental feeding study with large felids. J Hum Evol. 80:114–134.
  • Pickering TR. 2001a. Carnivore voiding: a taphonomic process with the potential for the deposition of forensic evidence. J Forensic Sci. 46:406–411.
  • Pickering TR. 2001b. Taphonomy of the Swartkrans hominid postcrania and its bearing on issues of meat-eating and fire management. In: Stanford CB, Bunn HT, editors. Meat-eating and human evolution. Oxford: Oxford University Press; p. 33–51.
  • Pickering TR. 2002. Reconsideration of criteria for differentiating faunal assemblages accumulated by hyenas and hominids. Int J Osteoarchaeol. 12:127–141.
  • Pickering TR, Clarke R, Moggi-Cecchi J. 2004. Role of carnivores in the accumulation of the sterkfontein member 4 hominid assemblage: a taphonomic reassessment of the complete hominid fossil sample (1936–1999). Am J Phys Anthropol. 125:1–15.
  • Pickering TR, Heaton J, Zwodeski SE, Kuman K. 2011. Taphonomy of bones from baboons killed and eaten by Wild Leopards in Mapungubwe National Park, South Africa. J Taphonomy. 9(2):117–159.
  • Pobiner BL. 2015. New actualistic data on the ecology and energetics of hominin scavenging opportunities. J Hum Evol. 80:1–16.
  • Potts R. 1988. Early hominid activities at Olduvai. New York: Aldine.
  • Richtsmeier JT, Deleon VB, Lele SR. 2002. The promise of geometric morphometrics. Am J Phys Anthropol. 119:63–91.
  • Rohlf FJ. 1999. Shape statistics: procrustes superimpositions and tangent spaces. J Classif. 16:197–223.
  • Ruiter D, Berger L. 2000. Leopards as taphonomic agents in dolomitic caves–implications for Bone accumulations in the hominid-bearing deposits of South Africa. J Archaeol Sci. 27:665–684.
  • Sauqué V, Rabal-Garcés R, Sola-Almagro C, Cuenca-Bescós G. 2014. Bone accumulation by leopards in the Late Pleistocene in the Moncayo Massif (Zaragoza, NE Spain). PLoS One. 9(3):e92144.
  • Sauqué V, Sanchis A. 2017. Leopards as taphonomic agents in the Iberian Pleistocene, the case of Racó del Duc (Valencia, Spain). Palaeogeogr Palaeoclimatol Palaeoecol. 472:67–82.
  • Sauqué V, Sanchis A, Madurell-Malapeira J. 2018. Late Pleistocene leopards as a bone accumulator: taphonomic results from S’Espasa cave and other Iberian key sites. Hist Biol. 30(6):821–834.
  • Schaller GB. 1972. The serengeti lion: a study of predator-prey relations. Chicago: The Univeristy of Chicago Press.
  • Selvaggio MM. 1994. Identifying the timing and sequence of hominid and carnivore involvement with Plio-Pleistocene bone assemblages from carnivore tooth marks and stone-tool butchery marks on bone surfaces [ Ph.D. Dissertation]. New Brunswick: Rutgers University.
  • Shipman P, Rose JJ. 1983. Early hominid hunting, butchering and carcass-processing behaviors: approaches to the fossil record. J Anthropol Archaeol. 2:57–98.
  • Simons JW. 1966. The presence of leopard and a study of the food debris in the leopard lairs of the Mount Suswa caves, Kenya. Bull Cave Explor Group East Afr. 1:51–69.
  • Skinner JD. 1976. Ecology of the brown hyaena Hyaena brunnea in the Transvaal with a distribution map for southern Africa. S Afr J Wildl Res. 72:262–269.
  • Skinner JD, Davis S, Ilani G. 1980. Bone collecting by striped hyaenas, Hyaena hyaena, in Israel. Pal Afr. 23:99–104.
  • Slice DE. 2001. Landmark coordinates aligned by procrustes analysis do not lie in Kendall’s shape space. Syst Biol. 50(1):141–149.
  • Sutcliffe AJ. 1970. Spotted hyaena: crusher, gnawer, digester and collector of bones. Nature. 227(5263):1110–1113.
  • Thirria E 1833. Statique minéralogique et géologie du département de la Haute-Loire Besançon Outhenin Chalande.
  • Tournal M. 1833. General considerations on the phenomenon of bone averns. Ann Himie Phys. 25:161–171.
  • Turner A. 1989. Sample selection, schlepp effects and scavenging: the implications of partial recovery for interpretations of the terrestrial mammal assemblage from Klasies River Mouth. J Archaeol Sci. 16:1–11.
  • Venables WN, Ripley BD. 2002. Modern applied statistics with S. 4th ed. Statistics and Computing. New York: Springer; p. 495.
  • Weiner J 2017. pca3d: three dimensional PCA Plots. R package version 0.10. https://cran.r-project.org/web/packages/pca3d/index.html.
  • Wickham H. 2009. ggplot2: elegant graphics for data analysis. Dordrech, New York: Springer-Verlag New York.
  • Yravedra J. 2010. A taphonomic perspective on the origins of the faunal remains from Amalda Cave (Spain). J Taphonomy. 8(4):301–334.
  • Yravedra J, Aramendi J, Maté-González MÁ, Austin Courtenay L, González-Aguilera D. 2018. Differentiating percussion pits and carnivore tooth pits using 3D reconstructions and geometric morphometrics. PLoS One. 13(3):e0194324. doi:10.1371/journal.pone.0194324.
  • Yravedra J, García-Vargas E, Maté-González MA, Palomeque-González JF. 2017. The use of micro-photogrammetic and geometric-morphometry for identifying carnivore activity in the bone assemblages. J Archaeol Sci Repor. 14:106–115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.