Publication Cover
Historical Biology
An International Journal of Paleobiology
Volume 33, 2021 - Issue 2
381
Views
6
CrossRef citations to date
0
Altmetric
Articles

Iron-mediated deep-time preservation of osteocytes in a Middle Triassic reptile bone

ORCID Icon, ORCID Icon, , &
Pages 186-193 | Received 31 Jan 2019, Accepted 23 Mar 2019, Published online: 09 Apr 2019

References

  • Bardziński W, Surmik D, Lewandowski M. 2008. Middle Triassic vertebrate locality near Żyglin in Upper Silesia, Poland. Przeglad Geol. 56:532–536.
  • Bell LS, Kayser M, Jones C. 2008. The mineralized osteocyte: a living fossil. Am J Phys Anthropol. 137:449–456.
  • Bertazzo S, Maidment SCR, Kallepitis C, Fearn S, Stevens MM, Xie H. 2015. Fibres and cellular structures preserved in 75-million–year-old dinosaur specimens. Nat Commun. 6:7352.
  • Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC. 2011. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci. 257:2717–2730.
  • Bonewald LF. 2011. The amazing osteocyte. J Bone Miner Res. 26:229–238.
  • Bonewald LF, Kneissel M, Johnson M. 2016. Preface: the Osteocyte. Bone. 54:181.
  • Brion D. 1980. Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a l’air et dans l’eau. Appl Surf Sci. 5:133–152.
  • Cadena E. 2016. Microscopical and elemental FESEM and Phenom ProX-SEM-EDS analysis of osteocyte- and blood vessel-like microstructures obtained from fossil vertebrates of the Eocene Messel Pit, Germany. PeerJ. 4:e1618.
  • Cadena EA, Schweitzer MH. 2012. Variation in osteocytes morphology vs bone type in turtle shell and their exceptional preservation from the Jurassic to the present. Bone. 51:614–620.
  • Cadena EA, Schweitzer MH. 2014. A pelomedusoid turtle from the Paleocene–Eocene of Colombia exhibiting preservation of blood vessels and osteocytes. J Herpetol. 48:461–465.
  • Colombo C, Palumbo G, He J-Z, Pinton R, Cesco S. 2014. Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J Soils Sediments. 14:538–548.
  • Cornell RM, Schwertmann U. 2003. The iron oxides: structure, properties, reactions, occurrences, and uses. 2nd ed. completely rev. and extended ed. Weinheim: Wiley-VCH.
  • Dallas SL, Prideaux M, Bonewald LF. 2013. The osteocyte: an endocrine cell .. and more. Endocr Rev. 34:658–690.
  • Das S, Hendry MJ. 2011. Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chem Geol. 290:101–108.
  • de Faria DLA, Venâncio Silva S, de Oliveira MT. 1997. Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc. 28:873–878.
  • Dünnwald J, Otto A. 1989. An investigation of phase transitions in rust layers using raman spectroscopy. Corros Sci. 29:1167–1176.
  • Eggleston CM, Hochella MFJ. 1992. The structure of hematite [001] surfaces by scanning tunneling microscopy: image interpretation, surface relaxation, and step structure. Am Mineral US. 77:9–10.
  • Fernández-Remolar DDC. 2011. Iron Oxyhydroxides. In: Gargaud M, Amils PR, Quintanilla JC, II HJ (Jim) C, Irvine WM, Pinti PDL, Viso M, editors. Encyclopedia of Astrobiology. Berlin: Springer; p. 855–857.
  • Gouadec G, Colomban P. 2007. Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog Cryst Growth Charact Mater. 53:1–56.
  • Greenwalt DE, Goreva YS, Siljestrom SM, Rose T, Harbach RE. 2013. Hemoglobin-derived porphyrins preserved in a Middle Eocene blood-engorged mosquito. Proc Natl Acad Sci. 110:18496–18500.
  • Hanesch M. 2009. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys J Int. 177:941–948.
  • Hedges REM, Millard AR, Pike AWG. 1995. Measurements and relationships of diagenetic alteration of bone from three archaeological sites. J Archaeol Sci. 22:201–209.
  • Kiprijanoff W. 1883. Studien über die fossilen Reptilien Russlands III. Theil Gruppe Thaumatosauria n. aus der Kreide-Formation und dem Moskauer Jura. Mem Acad Sci St Petersb. 7e, 31:1–57.
  • Klein N. 2010. Long bone histology of sauropterygia from the Lower Muschelkalk of the Germanic basin provides unexpected implications for phylogeny. PLoS One. 5:e11613.
  • Klein N, Sander PM, Krahl A, Scheyer TM, Houssaye A. 2016. Diverse aquatic adaptations in Nothosaurus spp. (Sauropterygia)—inferences from humeral histology and microanatomy. PLoS One. 11:e0158448.
  • Konno H, Nagayama M. 1980. X-ray photoelectron spectra of hexavalent iron. J Electron Spectrosc Relat Phenom. 18:341–343.
  • Kontopoulos I, Penkman K, McAllister GD, Lynnerup N, Damgaard PB, Hansen HB, Allentoft ME, Collins MJ. 2019. Petrous bone diagenesis: a multi-analytical approach. Palaeogeogr Palaeoclimatol Palaeoecol. 518:143–154.
  • Kowal-Linka M. 2015. Analysis of marrow cavity fillings as a tool to recognise diverse taphonomic histories of fossil reptile bones: implications for the genesis of the Lower Muschelkalk marine bone-bearing bed (Middle Triassic, Żyglin, S Poland). Palaeogeogr Palaeoclimatol Palaeoecol. 436:64–76.
  • Kowal-Linka M, Jochum KP. 2015. Variability of trace element uptake in marine reptile bones from three Triassic sites (S Poland): influence of diagenetic processes on the host rock and significance of the applied methodology. Chem Geol. 397:1–13.
  • Kowal-Linka M, Jochum KP, Surmik D. 2014. LA-ICP-MS analysis of rare earth elements in marine reptile bones from the Middle Triassic bonebed (Upper Silesia, S Poland): impact of long-lasting diagenesis, and factors controlling the uptake. Chem Geol. 363:213–228.
  • Kozlova AP, Sugiyama S, Kozlov AI, Asakura K, Iwasawa Y. 1998. Iron-oxide supported gold catalysts derived from gold-phosphine complex Au (PPh 3)(NO 3): state and structure of the support. J Catal. 176:426–438.
  • Kuchler U, Pfingstner G, Busenlechner D, Dobsak T, Reich K, Heimel P,Gruber R. 2013. Osteocyte lacunar density and area in newly formed bone of the augmented sinus. Clin Oral Implants Res. 24:285–289.
  • Langevoort JC, Sutherland I, Hanekamp LJ, Gellings PJ. 1987. On the oxide formation on stainless steels AISI 304 and incoloy 800H investigated with XPS. Appl Surf Sci. 28:167–179.
  • Lee Y-C, Chiang -C-C, Huang P-Y, Chung C-Y, Huang TD, Wang -C-C, Chen C-I, Chang R-S, Liao C-H, Reisz RR. 2017. Evidence of preserved collagen in an Early Jurassic sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy. Nat Commun. 8:14220.
  • Lindgren J, Uvdal P, Engdahl A, Lee AH, Alwmark C, Bergquist K-E, Nilsson E, Ekström P, Rasmussen M, Douglas DA, et al. 2011. Microspectroscopic evidence of cretaceous bone proteins. PLoS One. 6:e19445.
  • Massey MJ. 1990. Effects of pressure and isotopic substitution on the Raman spectrum of α-Fe2O3: identification of two-magnon scattering. Phys Rev B. 41:7822–7827.
  • Neves R, Tarlo LBH. 1965. Isolation of fossil osteocytes. J R Microsc Soc. 84:217–219.
  • Owen P. 1863. On the Archeopteryx of Von Meyer, with a description of the fossil remains of a long-tailed species, from the lithographic stone of Solenhofen. Philos Trans R Soc Lond. 153:33–47.
  • Pawlicki R. 1978a. Morphological differentiation of the fossil dinosaur bone cells. Light, transmission electron-, and scanning electron-microscopic studies. Acta Anat (Basel). 100:411–418.
  • Pawlicki R. 1978b. Methods of preparation of fossil bone samples for light and transmission electron microscopy. Stain Technol. 53:95–102.
  • Pawlicki R. 1983. Metabolic pathways of the fossil dinosaur bones. Part I. Vascular communication system. Folia Histochem Cytochem (Krakow). 21:253–261.
  • Pawlicki R. 1984a. Metabolic pathways of the fossil dinosaur bones Part II. Vascular canal in the communication system. Folia Histochem Cytobiol. 22:33–41.
  • Pawlicki R. 1984b. Metabolic pathways of the fossil dinosaur bones. Part III. Intermediary and other osteocytes in the system of metabolic pathways of dinosaur bone. Folia Histochem Cytobiol. 22:91–97.
  • Pawlicki R. 1984c. Metabolic pathways of the fossil dinosaur bones. Part IV. Modes of linkage between osteocytes and a variety of nexuses of osteocytes processes. Folia Histochem Cytobiol. 22:99–104.
  • Pawlicki R. 1985. Metabolic pathways of the fossil dinosaur bones. Part V. Morphological differentiation of osteocyte lacunae and bone canaliculi and their significance in the system of extracellular communication. Folia Histochem Cytobiol. 23:165–174.
  • Pawlicki R. 1995. Histochemical demonstration of DNA in osteocytes from dinosaur bones. Folia Histochem Cytobiol. 33:183–186.
  • Pawlicki R, Korbel A, Kubiak H. 1966. Cells, collagen fibrils and vessels in dinosaur bone. Nature. 211:655–657.
  • Plet C, Grice K, Pagès A, Verrall M, Coolen MJL, Ruebsam W, Rickard WDA, Schwark L. 2017. Palaeobiology of red and white blood cell-like structures, collagen and cholesterol in an ichthyosaur bone. Sci Rep. 7:13776.
  • Reisz RR, Huang TD, Roberts EM, Peng S, Sullivan C, Stein K, LeBlanc ARH, Shieh D, Chang R, Chiang C, et al. 2013. Embryology of early jurassic dinosaur from China with evidence of preserved organic remains. Nature. 496:210–214.
  • Schweitzer MH, Avci R, Collier T, Goodwin MB. 2008. Microscopic, chemical and molecular methods for examining fossil preservation. Comptes Rendus Palevol. 7:159–184.
  • Schweitzer MH, Johnson C, Zocco TG, Horner JR, Starkey JR. 1997. Preservation of biomolecules in cancellous bone of Tyrannosaurus rex. J Vertebr Paleontol. 17:349–359.
  • Schweitzer MH, Wittmeyer JL, Horner JR. 2007. Soft tissue and cellular preservation in vertebrate skeletal elements from the Cretaceous to the present. Proc R Soc B Biol Sci. 274:183–197.
  • Schweitzer MH, Zheng W, Cleland TP, Bern M. 2013. Molecular analyses of dinosaur osteocytes support the presence of endogenous molecules. Bone. 52:414–423.
  • Schweitzer MH, Zheng W, Cleland TP, Goodwin MB, Boatman E, Theil E, Marcus MA, Fakra SC. 2014. A role for iron and oxygen chemistry in preserving soft tissues, cells and molecules from deep time. Proc R Soc Lond B Biol Sci. 281:20132741.
  • Sobanska S, Deneele D, Barbillat J, Ledésert B. 2016. Natural weathering of slags from primary Pb–Zn smelting as evidenced by Raman microspectroscopy. Appl Geochem. 64:107–117.
  • Stein KWH, Werner J. 2013. Preliminary analysis of osteocyte lacunar density in long bones of tetrapods: all measures are bigger in sauropod dinosaurs. Evans DC, editor. PLoS One. 8:e77109.
  • Surmik D. 2010. Preliminary taphonomical analysis of Lower Muschelkalk bone accumulation in Silesia (Poland). In: Dariusz N, editor. Morphology and systematic of fossil vertebrates. Wrocław: DN Publisher; p. 110–117.
  • Surmik D, Boczarowski A, Balin K, Dulski M, Szade J, Kremer B, Pawlicki R. 2016. Spectroscopic studies on organic matter from Triassic reptile bones, Upper Silesia, Poland. PLoS One. 11:e0151143.
  • Surmik D, Rothschild BM, Pawlicki R. 2017. Unusual intraosseous fossilized soft tissues from the Middle Triassic Nothosaurus bone. Sci Nat. 104:25. doi:10.1007/s00114-017-1451-y
  • Theil EC, Goss DJ. 2009. Living with iron (and oxygen): questions and answers about iron homeostasis. Chem Rev. 109:4568–4579.
  • Wiemann J, Fabbri M, Yang T-R, Stein K, Sander PM, Norell MA, Briggs DEG. 2018. Fossilization transforms vertebrate hard tissue proteins into N-heterocyclic polymers. Nat Commun. 9:4741.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.