Publication Cover
Historical Biology
An International Journal of Paleobiology
Volume 33, 2021 - Issue 5
3,003
Views
26
CrossRef citations to date
0
Altmetric
Articles

The end-Guadalupian (259.8 Ma) biodiversity crisis: the sixth major mass extinction?

&
Pages 716-722 | Received 08 Jul 2019, Accepted 16 Aug 2019, Published online: 05 Sep 2019

References

  • Alroy J. 2010. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. In: Alroy J, Hunt G, editors. Quantitative methods in paleobiology: The paleontological society papers. Vol. 16; p. 55–80. Cambrige: Cambridge Univ. Press.
  • Bambach R. 2006. Phanerozoic biodiversity mass extinctions. Annu Rev Earth Planet Sci. 34:127–155.
  • Bambach RK, Knoll AH, Wang SC. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology. 30:522–542.
  • Barnofsky AD, Page RE, Robinson GE, Seeley TD. 2011. Has the Earth’s sixth extinction already arrived? Nature. 471. doi:10.1038/nature09678.
  • Bond D, Wignall P. 2009. Latitudinal selectivity of foraminifer extinctions during the late Guadalupian crisis. Paleobiology. 35:465–483.
  • Bond DPG, Hilton J, Wignall PB, Ali JR, Stevens LG, Sun Y, Lai X. 2010a. The Middle Permian (Capitanian) mass extinction on land and in the oceans. Earth Sci Rev. 102:100–116.
  • Bond DPG, Wignall PB, Joachimski MM, Sun Y, Savov I, Grasby SE, Beauchamp B, Blomeier DPG. 2015. An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification. Geol Soc Am Bull. 127:1411–1421.
  • Bond DPG, Wignall PB, Wang W, Izon G, Jiang H-S, Lai X-L, Sun Y-D, Newton RJ, Shao L-Y, Védrine S, et al. 2010b. The mid-Capitanian (Middle Permian) mass extinction and carbon isotope record of South China. Palaeogeogr Palaeoclimatol Palaeoecol. 292:282–294.
  • Brocklehurst N, Dunne EM, Cashmore DD, Frobisch J. 2018. Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea. Nat Commun. 9:5216.
  • Caldeira K, Rampino MR. 1993. The aftermath of the K/T boundary mass extinction: Biogeochemical stabilization of the carbon cycle and climate. Paleoceanography. 8:515–525.
  • Ceballos GEhrlich PR. 2018. The misunderstood sixth mass extinction. Science. 360:1080–1081.
  • Ceballos G, Ehrlich PR, Dirzo R. 2017. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci USA. 114:E6089–E6096.
  • Chen FY, Xue W, Yan J, Wignall PB, Meng Q, Luo J, Feng Q. 2018. Alatoconchids: Giant Permian bivalves from South China. Earth Sci Rev. 179:147–167.
  • Clapham ME. 2015. Ecological consequences of the Guadalupian extinction and its role in the brachiopod-mollusk transition. Paleobiology. 41:266–279.
  • Clapham ME, Payne JL. 2011. Acidification, anoxia, and extinction: A multiple logistic regression analysis of selectivity during the middle and late Permian. Geology. 39:1059–1062.
  • Clapham ME, Shen S, Bottjer DJ. 2009. The double mass extinction revisited: Reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian). Paleobiology. 35:32–50.
  • Clapman ME, Bottjer DJ. 2007. Permian marine paleoecology and its implications for large-scale decoupling of brachiopod and bivalve abundance and diversity during the Lopingian (Late Permian). Palaeogeogr Palaeoclimatol Palaeoecol. 249:283–301.
  • Cleal CJ. 2018. A global review of Permian macrofloral biostratigraphical schemes. Geol Soc London Spec Publ. 450:349–364.
  • Davydov VI, Crowley JL, Schmitz MD, Snyder WS. 2016. New U-Pb constraints identify the end-Guadalupian and possibly end-Lopingian extinction events conceivably preserved in the passive margin of North America: implication for regional tectonics. Geol Mag. doi:10.1017/S0016756816000959
  • Day MO, Ramezani J, Bowring S, Sadler PM, Erwin DH, Abdala F, Rubidge BS. 2015. When and how did the terrestrial mid-Permian mass extinction occur? Evidence from the tetrapod record of the Karoo Basin, South Africa. Proc R Soc B. 282:20150834.
  • Droser ML, Bottjer DJ, Sheehan PM. 1997. Evaluating the ecological architecture of major events in the Phanerozoic history of marine invertebrate life. Geology. 25:167–170.
  • Droser ML, Bottjer DJ, Sheehan PM, McGhee GR. 2000. Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology. 28:675–678.
  • Flügel E, Kiessling W. 2002. Patterns of phanerozoic reef crises. In: Kiessling W, Flügel E, Golonka J, editors. Phanerozoic reef patterns, Vol. 72. SEPM Special Publication; p. 691–733. Tulsa: Society for Sedimentary Geology.
  • Grasby SE, Beauchamp B, Bond DPG, Wignall PB, Sanei H. 2016. Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in NW Pangea. Geol Mag. 153:285–297.
  • Groves JR, Wang Y. 2013. Timing and size selectivity of the Guadalupian (Middle Permian) extinction. J Paleontol. 87:183–196.
  • He B, Xu Y, Huang X, Luo Z, Shii Y, Yang Q, Yu S. 2007. Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth Planet Sci Lett. 255:306–323.
  • Huang K, Opdyke ND. 1998. Magnetostratigraphic investigations of an Emeishan basalt section in Western Guizhou Province, China. Earth Planet Sci Lett. 163:1–14.
  • Huang Y, Chen Z-Q, Wignall PB, Grasby SE, Zhao L, Wang X, Kaiho K. 2019. Biotic responses to volatile volcanism and environmental stresses over Guadalupian-Lopingian (Permian) transition. Geology. 47:175–178.
  • Isozaki Y, Aljinović D. 2009. End-Guadalupian extinction of the Permian gigantic bivalve Alatoconchidae: end of gigantism in tropical seas by cooling. Palaeogeogr Palaeoclimatol Palaeoecol. 284:11–21.
  • Isozaki Y, Aljinović D, Kawahata H. 2011. The Guadalupian (Permian) Kamura event in European Tethys. Palaeogeogr Palaeoclimatol Palaeoecol. 308:12–21.
  • Isozaki Y, Kawahata H, Minoshima K. 2007a. The Capitanian (Permian) Kamura cooling event: the beginning of the Paleozoic–Mesozoic transition. Palaeoworld. 16:6–30.
  • Isozaki Y, Kawahata H, Ota A. 2007b. A unique carbon isotope record across the Guadalupian–Lopingian (Middle-Upper Permian) boundary in mid-oceanic paleoatoll carbonates: the high-productivity “Kamura event” and its collapse in Panthalassa. Glob Planet Change. 55:21–38.
  • Jablonski D. 1986. Causes and consequences of mass extinctions: A comparative approach. In: Elliot DK, editor. Dynamics of Extinction. New York: Wiley; p. 183–229.
  • Jin Y. 1993. Pre-Lopingian benthos crisis: Comptes Rendus XXII ICC-P. Vol. 2. Buenos Aires. p. 269–278.
  • Jin Y, Shen S, Henderson CM, Wang X, Wang W, Wang Y, Cao C, Shang Q. 2006. The global stratotype section and point (GSSP) for the boundary between the Capitanian and Wuchiapingian stage (Permian). Episodes. 29:253–262.
  • Jin Y, Zhang J, Shang Q-H. 1994. Two phases of end-Permian mass extinction. Can Soc Pet Geol Memoir. 17:813–822.
  • Jin Y, Zhang J, Shang Q-H. 1995. Pre-Lopingian catastrophic event of marine faunas. Acta Palaeontol Sin. 34:410–427.
  • Kani T, Isozaki Y, Hayashi R, Zakharov YD, Popov A. 2018. Middle Permian (Capitanian) seawater 87Sr/86Sr minimum coincided with disappearance of tropical biota and reef collapse in NE Japan and Primorye (Far East Russia). Palaeogeogr Palaeoclimatol Palaeoecol. 499:13–21.
  • Kasuy A, Isozaki Y, Igo H. 2012. Constraining paleo-latitude of a biogeographic boundary in mid-Panthalassa: Fusuline province shift on the Late Guadalupian (Permian) migrating seamount. Gondwana Res. 21:611–623.
  • Kiessling W, Simpson C. 2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob Chang Biol. 17:56–67.
  • Kobayashi F. 2012. Middle and Late Permian foraminifers from the Chichibu Belt, Takachiho area, Kyushu, Japan—their implications for Middle and Late Permian faunal events. J Paleontol. 86:669–687.
  • Kocsis AT, Reddin CJ, Alroy J, Kiessling W. 2019. The R package divDyn for quantifying diversity dynamics using fossil sampling data. Methods Ecol Evol. 10:735–743.
  • Kolbert E. 2014. The sixth extinction: An unnatural history. New York: Henry Holt and Co.
  • Kolodka C, Vennin E, Vachard D, Trocme V, Goodarzi MH. 2014. Timing and progression of the end-Guadalupian crisis in the Fars province (Dalan Formation, Kuh-e Gakhum, Iran) constrained by foraminifers and other carbonate microfossils. Facies. 58:131–153.
  • Lai X, Wang W, Wignall PB, Bond DPG, Jiang H, Ali JR, John EH, Sun Y. 2008. Palaeoenvironmental change during the end-Guadalupian (Permian) mass extinction in Sichuan, China. Palaeogeogr Palaeoclimatol Palaeoecol. 269:78–93.
  • Leakey R, Lewin R. 1992. The sixth extinction: Patterns of life and the future of humankind. New York: Doubleday.
  • Leonova T. 2009. Ammonoid evolution in marine ecosystems prior to the Permian–Triassic crisis. Paleontolog J. 43:858–865.
  • McGhee GR Jr., Clapham ME, Sheehan PM, Bottjer DJ, Droser ML. 2013. A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeogr Palaeoclimatol Palaeoecol. 370:260–270.
  • McGhee GR, Sheehan PM, Bottjer DJ, Droser ML. 2004. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeogr Palaeoclimatol Palaeoecol. 211:289–297.
  • Metcalfe I, Crowley JL, Nicoll RS, Schmitz M. 2015. High-precision U-Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Res. 28:61–81.
  • Ogg J, Ogg GM, Gradstein FM. 2016. A Concise Geologic Timescale 2016. Amsterdam: Elsevier.
  • Ota A, Isozaki Y. 2006. Fusuline biotic turnover across the Guadalupian–Lopingian (Middle–Upper Permian) boundary in mid-oceanic carbonate buildups: biostratigraphy of accreted limestone in Japan. J Asian Earth Sci. 26:353–368.
  • Rampino MR, Caldeira K. 2005. Major perturbations of ocean chemistry and a “Strangelove Ocean” after the end-Permian mass extinction. Terra Nova. 17:554–559.
  • Rampino MR, Caldeira K, Prokoph A. 2019. What causes mass extinctions? Large asteroid/comet impacts, flood-basalt volcanism, and ocean anoxia—Correlations and cycles. Geol Soc Am Specl Pap. 542:1–32.
  • Retallack GJ, Metzger CA, Greaver T, Jahren AH, Smith RMH, Sheldon ND. 2006. Middle-Late Permian mass extinction on land. Geol Soc Am Bull. 118:1398–1411.
  • Sepkoski JJ Jr. 1986. Phanerozoic overview of mass extinction. In: Raup DM, Jablonski D, editors. Patterns and processes in the history of life. Berlin: Springer-Verlag; p. 277–295.
  • Sepkoski JJ Jr. 1996. Patterns of Phanerozoic extinction: a perspective from global data bases. In: Walliser OH, editor. Global events and event stratigraphy. Berlin: Springer-Verlag; p. 35–51.
  • Sepkoski JJ Jr. 2002. A compendium of fossil marine animal genera. Bull Am Paleontol. 363:1–560.
  • Shellnutt JG. 2014. The Emeishan large igneous province: A synthesis. Geosci Front. 5:369–394.
  • Shen S-Z, Cao C-Q, Zhang H, Bowring SA, Henderson CM, Payne JL, Davydov VI, Chen B, Yuan D-X, Zhang Y-C, et al. 2013. High-resolution δ13Ccarb chemostratigraphy from latest Guadalupian through earliest Triassic in South China and Iran. Earth Planet Sci Lett. 375:156–165.
  • Shen S-Z, Henderson CM, Bowring SA, Cao C-Q, Wang Y, Wang W, Zhang H, Zhang Y-C, Mu L. 2010. High-resolution Lopingian (Late Permian) timescale of South China. Geol J. 45:122–134.
  • Shen S-Z, Shi GR. 1996. Diversity and extinction patterns of Permian brachiopods of South China. Hist Biol. 12:93–118.
  • Shen S-Z, Shi GR. 2002. Paleobiogeographical extinction patterns of Permian brachiopods in the Asian-western Pacific region. Paleobiology. 28:449–463.
  • Shen S-Z, Shi GR. 2009. Latest Guadalupian brachiopods from the Guadalupian/Lopingian boundary GSSP section at Penglaitan in Laibin, Guangxi, South China and implications for the timing of the pre-Lopingian crisis. Palaeoworld. 18:152–161.
  • Shen SZ, Zhang H, Zhang YC, Yuan DX, Chen B, He WH, Mu L, Lin W, Wang WQ, Chen J, et al. 2019. Permian integrative stratigraphy and timescale of China. Sci China Earth Sci. 62:154–188.
  • Signor P III, Lipps JH. 1982. Sampling bias, gradual extinction patterns, and catastrophes in the fossil record. Geol Soc Am Specl Pap. 190:291–296.
  • Stanley SM. 2007. An analysis of the history of marine animal diversity. Paleobiology Memoirs. 4:1–55.
  • Stanley SM. 2016. Estimates of the magnitudes of major marine mass extinctions in Earth history. Proc Natl Acad Sci U S A. 113:E6325-E6334. doi:10.1073/pnas.1613094113
  • Stanley SM, Yang X. 1994. A double mass extinction at the end of the Paleozoic era. Science. 266:1340–1344.
  • Svensen H, Planke S, Malthe-Sørensssen A, Jamtveit B, Myklebust R, Eidem TR, Rey SS. 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature. 429:542–545.
  • Vachard D, Pille L, Gaillot J. 2010. Palaeozoic foraminifera: systematics, palaeoecology, and responses to global changes. Rev Micropaleontol. 53:209–254.
  • Wake DB, Vredenburg VT. 2008. Are we in the midst of the sixth mass extinction?. Proc Natl Acad Sci USA. 105:11466–11473.
  • Wang X, Foster WJ, Yan J, Li A, Mutti M. 2019. Delayed recovery of metazoan reefs on the Laibin-Heshan platform margin following the Middle Permian (Capitanian) mass extinction. Glob Planet Change. 180:1–15.
  • Wang XD, Sugiyama T. 2000. Diversity and extinction patterns of Permian coral faunas of China. Lethaia. 33:285–294.
  • Wei H, Chen D, Yu H, Wang J. 2012. End-Guadalupian mass extinction and negative carbon-isotope excursion at Xiaojiaba, Guangyuan, Sichuan. Sci China Earth Sci. 55:1480–1488.
  • Weidlich O. 2002. Permian reefs re-examined: extrinsic control mechanisms of gradual and abrupt changes during 40 my of reef evolution. Geobios. 35(Supplement 1):287–294.
  • Wignall PB, Bond DPG, Haas J, Wang W, Jiang H, Lai X, Altinar D, Védrine S, Hips K, Zajzon N, et al. 2012. Capitanian (Middle Permian) mass extinction and recovery in western Tethys: a fossil, facies and δ13C study from Hungary and Hydra Island (Greece). Palaios. 27:78–89.
  • Wignall PB, Sun Y, Bong DPG, Izon G, Newton RJ, Védrine S, Widdowson M, Ali JR, Lai X, Jiang H, et al. 2009. Volcanism, mass extinction and carbon isotope fluctuations in the Middle Permian of China. Science. 324:1179–1182.
  • Xu Y, Yang Z, Tong Y-B, Jing X. 2018. Paleomagnetic secular variation constraints on rapid eruption of Emeishan continental flood basalt in southwestern China and northern Vietnam. J Geophys Res. 123. doi:10.1002/2017JB014757.
  • Zhang B, Yao S, Hu W, Ding H, Liu B. 2018. Development of a high-productivity and anoxic-euxinic condition during the late Guadalupian in the Lower Yangtze region: Implications for the mid-Capitanian extinction event. Palaeogeogr Palaeoclimatol Palaeoecol. doi:10.1016/j.palaeo.2018.01.021
  • Zhang B, Yao S, Wignall PB, Hu W, Ren Y. 2019. New timing and geochemical constraints on the Capitanian (Middle Permian) extinction and environmental changes in deep-water settings: evidence from the Lower Yangtze region of South China. J Geol Soc London. 176:588–608.
  • Zhang G, Li D, Farquhar J, Shen SZ, Chen X, Shen Y, 2015. Widespread shoaling of sulfidic waters linked to the end-Guadalupian (Permian) mass extinction. Geology. 43:1891–1894.
  • Zhang YC, Payne JL. 2012. Size-frequency distributions along a latitudinal gradient in Middle Permian fusulinoideans. PLoS One. 7:38603.
  • Zhong YT, He B, Mundil R, Xu YG. 2014. CA-TIMS zircon U–Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan large igneous province. Lithos. 204:14–19.
  • Zhou M-F, Malpas J, Song X-Y, Robinson PT, Sun M, Kennedy AK, Lesher CM, Keays RR. 2002. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth Planet Sci Lett. 196:113–122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.