Publication Cover
Historical Biology
An International Journal of Paleobiology
Volume 33, 2021 - Issue 9
170
Views
3
CrossRef citations to date
0
Altmetric
Articles

Dietary reconstruction and palaeoecology of Eocene Lophialetidae (Mammalia: Tapiroidea) from the Erlian Basin of China: evidence from dental microwear

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 1624-1635 | Received 19 Sep 2019, Accepted 23 Jan 2020, Published online: 04 Feb 2020

References

  • Asevedo L, Winck GR, Mothé D, Avilla LS. 2012. Ancient diet of the Pleistocene gomphothere Notiomastodon platensis (Mammalia, Proboscidea, Gomphotheriidae) from lowland mid-latitudes of South America: stereomicrowear and tooth calculus analyses combined. Quat Int. 255:42–52.
  • Bai B, Wang YQ, Li Q, Wang HB, Mao FY, Gong YX, Meng J. 2018. Biostratigraphy and diversity of paleogene perissodactyls from the Erlian Basin of Inner Mongolia, China. Am Mus Novit. 2018(3914):1–61.
  • Bai B, Wang YQ, Mao FY, Meng J. 2017. New material of Eocene helaletidae (Perissodactyla, Tapiroidea) from the Irdin Manha Formation of the Erlian Basin, Inner Mongolia, China and comments on related localities of the Huheboerhe area. Am Mus Novit. 2017(3878):1–45.
  • Bastl K, Semprebon G, Nagel D. 2012. Low-magnification microwear in Carnivora and dietary diversity in Hyaenodon (Mammalia: Hyaenodontidae) with additional information on its enamel structure. Palaeogeogr Palaeoclimatol Palaeoecol. 348–349:13–20.
  • Bocherens H, Hofman-Kamińska E, Drucker DG, Schmölcke U, Kowalczyk R. 2015. European bison as a refugee species? Evidence from isotopic data on Early Holocene bison and other large herbivores in northern Europe. PLoS One. 10(2):e0115090.
  • Calandra I, Gӧhlich UB, Merceron G. 2008. How could sympatric megaherbivores coexist? Example of niche partitioning within a proboscidean community from the Miocene of Europe. Naturwissenschaften. 95:831–838.
  • Cammidge TS 2017. Comparison of paleodietary reconstructions using pre-and post-glacial Mammut and Mammuthus. PhD thesis. University of Calgary, Calgary, 18 pp.
  • Chen H, Wang SQ, Tao DW, Xia XM, Chen SQ, Wu Y. 2018. Implications for Late Miocene diet from Diceros gansuensis: starch granules in tooth calculus. Vert PalAsiat. 56(4):343–353. [in Chinese with English summary].
  • Christensen HB. 2014. Similar associations of tooth microwear and morphology indicate similar diet across marsupial and placental mammals. PLoS One. 9(8):e102789.
  • d’Incau E, Couture C, Maureille B. 2012. Human tooth wear in the past and the present: tribological mechanisms, scoring systems, dental and skeletal compensations. Arch Oral Biol. 57:214–229.
  • Damuth J, Janis CM. 2011. On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. Biol Rev. 86(3):733–758.
  • DeMiguel D, Azanza B, Morales J. 2011. Paleoenvironments and paleoclimate of the middle Miocene of central Spain: a reconstruction from dental wear of ruminants. Palaeogeogr Palaeoclimatol Palaeoecol. 302:452–463.
  • Domingo L, Koch PL, Grimes ST, Morales J, Lόpez-Martínez N. 2012. Isotopic paleoecology of mammals and the middle Miocene cooling event in the Madrid Basin (Spain). Palaeogeogr Palaeoclimatol Palaeoecol. 339–341:98–113.
  • Dompierre H, Churcher CS. 1996. Premaxillary shape as an indicator of the diet of seven extinct late Cenozoic new world camels. J Vertebr Paleontol. 16(1):141–148.
  • Fahlke JM, Bastl KA, Semprebon GM, Gingerich PD. 2013. Paleoecology of archaeocete whales throughout the Eocene: dietary adaptations revealed by microwear analysis. Palaeogeogr Palaeoclimatol Palaeoecol. 386:690–701.
  • Fortelius M. 1985. Ungulate cheek teeth: developmental, functional, and evolutionary interrelationships. Acta Zool Fennici. 180:1–76.
  • Fortelius M, Eronen J, Jernvall J, Liu L, Pushinka D, Rinne J, Tesakov A, Vislobokova I, Zhang Z, Zhou L. 2002. Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evol Ecol Res. 4:1005–1016.
  • Fortelius M, Solounias N. 2000. Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. Am Mus Novit. 3301:1–36.
  • Fraser D, Mallon JC, Furr R, Teodor JM. 2009. Improving the repeatability of low magnifcation microwear methods using high dynamic range imaging. Palaios. 24:818–825.
  • Gong YX. 2017. An introduction of application of dental wear analyses in paleodietary reconstruction of herbivorous mammals. Acta Palaeontologica Sinica. 36(1):117–128. [in Chinese with English summary].
  • Gong YX, Wang YQ, Wang Y, Mao FY, Bai B, Wang HB, Li Q, Jin X, Wang X, Meng J. 2019. Dietary adaptations and paleoecology of Lophialetidae (Mammalia: tapiroidea) from the Eocene of the Erlian Basin, China: combined evidence from mesowear and stable isotope analyses. Palaeontology. doi:https://doi.org/10.1111/pala.12471.
  • Green JL, Semprebon GM, Solounias N. 2005. Reconstructing the palaeodiet of Florida Mammut americanum via low-magnification stereomicroscopy. Palaeogeogr Palaeoclimatol Palaeoecol. 223(1–2):34–48.
  • Grine FE. 1986. Dental evidence for dietary differences in Australopithecus and Paranthropus: a quantitative analysis of permanent molar microwear. J Hum Evol. 15(8):783–822.
  • Haiduc BS, Ratoi BG, Semprebon GM. 2018. Dietary reconstruction of Plio-Pleistocene proboscideans from the Carpathian Basin of Romania using enamel microwear. Quat Int. 467:222–229.
  • Jacobs BF, Kingston JD, Jacobs LL. 1999. The origin of grass-dominated ecosystems. Ann Mo Bot Gard. 86(2):590–643.
  • Janis CM, Fortelius M. 1988. On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biol Rev. 63:197–230.
  • Kaiser TM, Solounias N, Fortelius M, Bernor RL, Schrenk F. 2000. Tooth mesowear analysis on Hippotherium primigenium from the Vallesian Dinotheriensande (Germany) — a blind test study. Carolinea. 58(2000):103–114.
  • King T, Andrews P, Boz B. 1999. Effect of taphonomic processes on dental microwear. Am J Phys Anthropol. 108:359e373.
  • Leopold EB, Liu G, Clay-Poole S. 1992. Low-biomass vegetation in the Oligocene? In: Prothero DR, Berggren WA, editors. Eocene-Oligocene Climatic and Biotic Evolution. Princeton: Princeton University Press; p. 399–420.
  • Li P 2009. Lophialetes and Schlosseria from Huheboerhe section, Erlian basin, Inner Mongolia [master’s thesis]. Beijing: University of Chinese Academy of Sciences.
  • Li P, Wang YQ. 2010. Newly discovered Schlosseria magister (Lophialetidae, Perissodactyla, Mammalia) skulls from central Nei Mongol, China. Vert PalAsiat. 48(2):119–132.
  • Li X, Sun X, Walker D. 1984. The potential for palaeobotany in the explanation of China’s plant geography. Acta Botanica Yunnanica. 6(2):129–140.
  • Mainland IL. 1998. Dental microwear and diet in domestic sheep (Ovis aries) and goats (Capra hircus): distinguishing grazing and fodder-fed ovicaprids using a quantitative analytical approach. J Archaeol Sci. 25:1259–1271.
  • Matthew WD, Granger W. 1926. Two new perissodactyls from the Arshanto Eocene of Mongolia. Am Mus Novit. 208:1–5.
  • Meng J, Mckenna M. 1998. Faunal turnovers of palaeogene mammals from the Mongolian Plateau. Nature. 394(6691):364–367.
  • Meng J, Wang YQ, Ni XJ, Beard KC, Sun CK, Li Q, Jin X, Bai B. 2007. New stratigraphic data from the Erlian Basin: implications for the division, correlation, and definition of Paleogene lithological units in Nei Mongol (Inner Mongolia). Am Mus Novit. 3570:1–31.
  • Merceron G, Blondel C, de Bonis L, Koufos GD, Viriot L. 2005. A new method of dental microwear: application to extant primates and Ouranopithecus macedoniensis (Late Miocene of Greece). Palaios. 20:551–561.
  • Merceron G, Blondel C, Viriot L, Koufos GD, de Bonis L. 2007. Dental microwear analysis of bovids from the Vallesian (late Miocene) of Axios valley in Greece: reconstruction of the habitat of Ouranopithecus macedoniensis (Primates, Hominoidea). Geodiversitas. 29:421e433.
  • Merceron G, Viriot L, Blondel C. 2004. Tooth microwear pattern in roe deer (Capreolus capreolus L.) from Chizé (Western France) and relation to food composition. Small Ruminant Res. 53:125–132.
  • Mihlbachler MC, Beatty BL, Caldera-Siu A, Chan D, Lee R. 2012. Error rates and observer bias in dental microwear analysis using light microscopy. Palaeontol Electron. 15:1–22.
  • Ni XJ, Beard KC, Meng J, Wang YQ, Gebo DL. 2007. Discovery of the first early Cenozoic euprimate (Mammalia) from inner Mongolia. Am Mus Novitat. 3571:1–11.
  • Ni XJ, Meng J, Beard KC, Gebo DL, Wang YQ, Li CK. 2010. A new tarkadectine primate from the Eocene of inner Mongolia, China: phylogenetic and biogeographic implications. Proc R Soc B-Biol Sci. 277:247–256.
  • Peigné S, Merceron G. 2019. Palaeoecology of cave bears as evidenced by dental wear analysis: a review of methods and recent findings. Hist Biol. 31(4):448–460.
  • Power RC, Salazar-García DC, Wittig RM, Freiberg M, Henry AG. 2015. Dental calculus evidence of Taï Forest Chimpanzee plant consumption and life history transitions. Sci Rep. 5:15161.
  • Qi T. 1987. The Middle Eocene Arshanto fauna (Mammalia) of Inner Mongolia. Ann Carnegie Mus. 56:1–73.
  • Radinsky LB. 1965. Early tertiary Tapiroidea of Asia. Bull Am Mus Nat Hist. 129:183–214.
  • Rivals F, Mihlbachler MC, Solounias N, Mol D, Semprebon GM, de Vos J, Kalthoff DC. 2010. Palaeoecology of the mammoth steppe fauna from the late Pleistocene of the North Sea and Alaska: separating species preferences from geographic influence in paleoecological dental wear analysis. Palaeogeogr Palaeoclimatol Palaeoecol. 286(2010):42–54.
  • Rivals F, Semprebon GM. 2006. A comparison of the dietary habits of a large sample of the Pleistocene pronghorn Stockoceros onusrosagris from the Papago Springs cave in Arizona to the modern Antilocapra americana. J Vertebr Paleontol. 26(2):495–500.
  • Rivals F, Semprebon GM. 2011. Dietary plasticity in ungulates: insight from tooth microwear analysis. Quat Int. 245:279e284.
  • Rivals F, Semprebon GM, Lister AM. 2012. An examination of dietary diversity patterns in Pleistocene proboscideans (Mammuthus, Palaeoloxodon, and Mammut) from Europe and North America as revealed by dental microwear. Quat Int. 255:188e195.
  • Rivals F, Solounias N, Mihlbachler MC. 2007. Evidence for geographic variation in the diets of Late Pleistocene and early Holocene Bison in North America, and differences from the diets of recent Bison. Quat Res. 68:338e346.
  • Rivals F, Takatsuki S, Albert RM, Macia L. 2014. Bamboo feeding and tooth wear of three sika deer (Cervus nippon) populations from northern Japan. J Mammal. 95(5):1043–1053.
  • Rotti A, Mothé D, Avilla LS, Semprebon GM. 2018. Diet reconstruction for an extinct deer (Cervidae: Cetartiodactyla) from the quaternary of South America. Palaeogeogr Palaeoclimatol Palaeoecol. 497(2018):244–252.
  • Saarinen J, Karme A, Cerling T, Uno K, Säilä L, Kasiki S, Ngene S, Obari T, Mbua E, Manthi FK, et al. 2015. A new tooth wear–based dietary analysis method for Proboscidea (Mammalia). J Vertebr Paleontol. 35(3):e918546.
  • Schulz E, Fahlke JM, Merceron G, Kaiser TM. 2007. Feeding ecology of the Chalicotheriidae (Mammalia, Perissodactyla, Ancylopoda). Results from dental micro-and mesowear analyses. Verh naturwiss Ver Hamburg. 43:5–31.
  • Scott RS, Ungar PS, Bergstrom TS, Brown CA, Childs BE, Teaford MF, Walker A. 2006. Dental microwear texture analysis: technical considerations. J Hum Evol. 51:339–349.
  • Scott RS, Ungar PS, Bergstrom TS, Brown CA, Grine FE, Teaford MF, Walker A. 2005. Dental microwear texture analysis shows within species diet variability in fossil hominins. Nature. 436:693–695.
  • Semprebon GM. 2002. Advances in the reconstruction of extant ungulate ecomorphology with applications to fossil ungulates (Ph. D, Disseration). University of Massachusetts, Amherst.
  • Semprebon GM, Godfrey LR, Solounias N, Sutherland MR, Jungers WL. 2004. Can low-magnification stereomicroscopy reveal diet? J Hum Evol. 47:115–144.
  • Semprebon GM, Rivals F. 2007. Was grass more prevalent in the pronghorn past? An assessment of the dietary adaptations of Miocene to recent Antilocapridae (Mammalia: artiodactyla). Palaeogeogr Palaeoclimatol Palaeoecol. 253:332–347.
  • Semprebon GM, Rivals F. 2010. Trends in the paleodietary habits of fossil camels from the tertiary and quaternary of North America. Palaeogeogr Palaeoclimatol Palaeoecol. 295:131e145.
  • Semprebon GM, Rivals F, Fahlke JM, Sanders WJ, Lister AM, Göhlich UB. 2015. Dietary reconstruction of pygmy mammoths from Santa Rosa island of California. Quat Int. 406(B):123–136.
  • Semprebon GM, Rivals F, Solounias N, Hulbert Jr RC. 2016a. Paleodietary reconstruction of fossil horses from the Eocene through Pleistocene of North America. Palaeogeogr Palaeoclimatol Palaeoecol. 442:110–127.
  • Semprebon GM, Solounias N, Deng T. 2017. Dietary reconstruction of Hezhengia bohlini (Artiodactyla, Bovidae) from the late Miocene Linxia Basin of China using enamel microwear. Palaeogeogr Palaeoclimatol Palaeoecol. 481:57–63.
  • Semprebon GM, Tao D, Hasjanova JSolounias N. 2016b. An examination of the dietary habits of platybelodon grangeri from the linxia basin of china: evidence from dental microwear of molar teeth and tusks. Palaeogeogr Palaeoclimatol Palaeoecol. 457:109–116.doi:https://doi.org/10.1016/j.palaeo.2016.06.012
  • Solounias N, Moelleken SMC. 1994. Dietary differences between two archaic ruminant species from Sansan, France. Hist Biol. 7:203–220.
  • Solounias N, Moelleken SMC. 1999. Dietary determination of extinct bovids through cranial foraminal analysis, with radiographic applications. Annales Musei Goulandris. 10:267–290.
  • Solounias N, Rivals F, Semprebon GM. 2010. Dietary interpretation and paleoecology of herbivores from Pikermi and Samos (late Miocene of Greece). Paleobiology. 36(1):113–136.
  • Solounias N, Semprebon G. 2002. Advances in the reconstruction of ungulate ecomorphology with application to early fossil equids. Am Mus Novit. 3366:1–49.
  • Solounias N, Teaford MF, Walker A. 1988. Interpreting the diet of extinct ruminants: the case of a non-browsing giraffid. Paleobiology. 14:287–300.
  • Strani F, DeMiguel D, Alba DM, Moyà-Solà S, Bellucci L, Sardella R, Madurell-Malapeira J. 2019. The effects of the “0.9 Ma event” on the Mediterranean ecosystems during the early-middle Pleistocene transition as revealed by dental wear patterns of fossil ungulates. Quaternary Sci Rev. 210:80–89.
  • Strani F, DeMiguel D, Bellucci L, Sardella R. 2018. Dietary response of early Pleistocene ungulate communities to the climate oscillations of the Gelasian/Calabrian transition in Central Italy. Palaeogeogr Palaeoclimatol Palaeoecol. 499:102–111.
  • Sun JM, Ni XJ, Bi SD, Wu WY, Ye J, Meng J, Windley BF. 2014. Synchronous turnover of flora, fauna, and climate at the Eocene–Oligocene Boundary in Asia. Sci Rep. 4:7463.
  • Teaford MF, Tylenda CA. 1990. A new approach to the study of tooth wear. J Dent Res. 70:204–207.
  • Tipple BJ, Meyer SR, Pagani M. 2010. The carbon isotope ratior of cenozoic CO2 : a comparative evaluation of available geochemical proxies. Paleoceanography. 25:1–11.
  • Tong YS, Zheng SH, Qiu ZD. 1995. Cenozoic mammal ages of China. Vert PalAsiat. 33:290–314.
  • Townsend KEB, Croft DA. 2008. Diets of notoungulates from the Santa Cruz Formation, Argentina: new evidence from enamel microwear. J Vertebr Paleontol. 28(1):217–230.
  • Ungar PS, Scott RS, Scott JR, Teaford M. 2008. Dental microwear analysis: historical perspectives and new approaches. In: Irish JD, Nelson GC, editors. Technique and application in dental anthropology. Cambridge: Cambridge University Press; p. 389–425.
  • Ungar PS. 2010. Mammalian teeth: origin, evolution, and diversity. Baltimore: Johns Hopkins University Press; p. 53–55.
  • Ungar PS. 2015. Mammalian dental function and wear: a review. Biosurf Biotribol. 1:25–41.
  • Wang Y, Kromhout E, Zhang CF, Xu YF, Parker W, Deng T, Qiu ZD. 2008b. Stable isotopic variations in modern herbivore tooth enamel, plants and water on the Tibetan Plateau: implications for paleoclimate and paleoelevation reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol. 260:359–374.
  • Wang YQ, Li Q, Bai B, Jin X, Mao FY, Meng J. 2019. Paleogene integrative stratigraphy and timescale of China. Sci China Earth Sci. 62(1):287–309.
  • Wang YQ, Meng J, Beard CK, Li Q, Ni XJ, Gebo DL, Bai B, Jin X, Li P. 2010. Early Paleogene stratigraphic sequences, mammalian evolution and its response to environmental changes in Erlian Basin, Inner Mongolia, China. Sci China Earth Sci. 53(12):1918–1926.
  • Wang YQ, Meng J, Jin X. 2012. Comments on Paleogene localities and stratigraphy in the Erlian Basin, Nei Mongol, China. Vert PalAsiat. 50:181–203.
  • Wang YQ, Meng J, Ni XJ, Beard CK. 2008a. A new early Eocene arctostylopid (Arctostylopida, Mammalia) from the Erlian Basin, Nei Mongol (Inner Mongolia), China. J Vert Paleont. 28(2):553–558.
  • Wang YQ, Meng J, Ni XJ, Li CK. 2007. Major events of Paleogene mammal radiation in China. Geol J. 42(3–4):415–430.
  • Williams FL, Geissler E. 2014. Reconstructing the diet and paleoecology of Plio-Pleistocene Cercopithecoides williamsi from Sterkfontein, South Africa. Palaios. 29:483–494.
  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science. 292:686–693.
  • Zazzo A, Balasse M, Passey BH, Moloney AP, Monahan FJ, Schmidt O. 2010. The isotope record of short- and long-term dietary changes in sheep tooth enamel: implications for quantitative reconstruction of paleodiets. Geochim Cosmochim Acta. 74:3571–3586.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.