Publication Cover
Historical Biology
An International Journal of Paleobiology
Volume 33, 2021 - Issue 10
440
Views
14
CrossRef citations to date
0
Altmetric
Articles

Arumberia and other Ediacaran–Cambrian fossils of central Australia

ORCID Icon &
Pages 1964-1988 | Received 29 Jan 2020, Accepted 09 Apr 2020, Published online: 13 May 2020

References

  • Aalto KR. 1995. Skin-friction (?) lines preserved on flute casts, Franciscan Complex, Point St. George, Northern California. J Sediment Res. 65:127–128.
  • Aceñolaza F, Aceñolaza G. 2005. La Formación Puncoviscana y unidades estratigráficas vinculadas en el Neoproterozoico-Cámbrico temprano del Noroeste Argentino. Latin Am J Sedimentol Basin Anal. 12:65–87.
  • Allen JRL. 1968. Flute marks and flute separation. Nature. 219(5154):602–604. doi:10.1038/219602a0.
  • Allen JRL. 1969. Erosional current marks of weakly cohesive mud beds. J Sediment Petrol. 39:607–623.
  • Antcliffe JB, Brasier MD. 2007. Charnia and sea pens are poles apart. J Geol Soc. 164(1):49–51. doi:10.1144/0016-76492006-080.
  • Antcliffe JB, Brasier MD. 2008. Charnia at 50: developmental models for Ediacaran fronds. Palaeontology. 51(1):11–26. doi:10.1111/j.1475-4983.2007.00738.x.
  • Arrouy MJ, Warren LV, Quaglio F, Poiré DG, Simões MG, Rosa MB, Peral LEG. 2016. Ediacaran discs from South America: probable soft-bodied macrofossils unlock the paleogeography of the Clymene Ocean. Sci Rep. 6(1):30590. doi:10.1038/srep30590.
  • Baas JH. 1994. A flume study on the development and equilibrium morphology of current ripples in very fine sand. Sedimentology. 41(2):185–209. doi:10.1111/j.1365-3091.1994.tb01400.x.
  • Bain GW. 1927. Huronian stromatoporoid-like masses. Pan-Am Geol. 47:281–287.
  • Baucon A, Felletti F. 2013. Neoichnology of a barrier-island system: the Mula di Muggia (Grado lagoon, Italy). Palaeogeogr Palaeoclimatol Palaeoecol. 375:112–124. doi:10.1016/j.palaeo.2013.02.011.
  • Becker YR. 1980. A new locality of Ediacara-type fauna in the Urals. Doklady Akademia Nauk SSSR. 254:480–482. in Russian.
  • Becker YR. 1985. Vendian metazoa from the Urals. In: Sokolov BS, Iwanowski AB, editors. The Vendian System: vol. 1 Paleontology. Berlin: Springer; p. 121–131.
  • Bengtson S, Rasmussen B, Krapež B. 2007. The Paleoproterozoic megascopic Stirling biota. Paleobiology. 33(3):351–381. doi:10.1017/S0094837300026348.
  • Ben-Jacob E, Schochet O, Tenenbaum A, Cohen I, Czirok A, Vicsek T. 1994. Generic modelling of cooperative growth patterns in bacterial colonies. Nature. 368(6466):46–49. doi:10.1038/368046a0.
  • Beraldi-Campesi H, Garcia-Pichel F. 2011. The biogenicity of modern terrestrial roll-up structures and its significance for ancient life on land. Geobiology. 9(1):10–23. doi:10.1111/j.1472-4669.2010.00258.x.
  • Billings E. 1872. Fossils in Huronian rocks. Can Nat Q J Sci. 6:478.
  • Bland BH. 1984. Arumberia Glaessner & Walter, a review of its potential for correlation in the region of the Precambrian–Cambrian boundary. Geol Mag. 121(6):625–633. doi:10.1017/S0016756800030776.
  • Bobrovskiy I, Hope JM, Ivantsov A, Nettersheim BJ, Hallmann C, Brocks JJ. 2018. Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals. Science. 361(6408):1246–1249. doi:10.1126/science.aat7228.
  • Bobrovskiy I, Krasnova A, Ivantsov A, Luzhnaya (Serezhnikova) E, Brocks JJ. 2019. Simple sediment rheology explains the Ediacara biota preservation. Nat Ecol Evol. 3(4):582–589. doi:10.1038/s41559-019-0820-7.
  • Bowers A. 2013. Precambrian fossil discoveries and new fossil localities in Charnwood Forest, Leicestershire. Mercian Geol. 18:91–98.
  • Boyce WD, Reynolds K. 2008. The Ediacaran fossil Aspidella terranovica Billings, 1872 from St John’s Convention Centre test pit CjAe-33. Curr Res. 8(1):55–61.
  • Brasier MD. 2004. Paleobiology: decoding the Ediacaran Enigma. Science. 305(5687):1115–1117. doi:10.1126/science.1102673.
  • Brasier MD, Antcliffe JB. 2009. Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis. J Geol Soc Lond. 166(2):363–384. doi:10.1144/0016-76492008-011.
  • Brasier MD, Antcliffe JB, Liu AG. 2012. The architecture of Ediacaran fronds. Palaeontology. 55(5):1105–1124. doi:10.1111/j.1475-4983.2012.01164.x.
  • Buatois LA, Mángano MG. 2012. The trace-fossil record of organism-matground interactions in space and time. In: Noffke N, Chafetz H, editors. Microbial mats in siliciclastic sediments, Society of Economic Paleontologists and Mineralogists Special Publication Tulsa Oklahoma Vol. 101; p. 15–28.
  • Buatois LA, Mángano MG. 2016. Ediacaran ecosystems and the dawn of animals. In: Buatois LA, Mángano MG, editors. The trace-fossil record of major evolutionary events. Dordrecht: Springer; p. 27–72.
  • Buatois LA, Mángano MG. 2002. Trace fossils from Carboniferous floodplain deposits in western Argentina: implications for ichnofacies models of continental environments. Palaeogeogr Palaeoclimatol Palaeoecol. 183(1–2):71–86. doi:10.1016/S0031-0182(01)00459-X.
  • Buckman JO. 1994. Archaeonassa Fenton and Fenton 1937 reviewed. Ichnos. 3(3):185–192. doi:10.1080/10420949409386387.
  • Bykova N, Gill BC, Grazhdankin D, Rogov V, Xiao S. 2017. A geochemical study of the Ediacaran discoidal fossil Aspidella preserved in limestones: implications for its taphonomy and paleoecology. Geobiology. 15(4):572–587. doi:10.1111/gbi.12240.
  • Callow RH, Battison L, Brasier MD. 2011b. Diverse microbially induced sedimentary structures from 1Ga lakes of the Diabaig Formation, Torridon Group, Northwest Scotland. Sediment Geol. 239(3–4):117–128. doi:10.1016/j.sedgeo.2011.06.002.
  • Callow RHT, Brasier MD. 2009. Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: implications for Ediacaran taphonomic models. Earth-Sci Rev. 96(3):207–219. doi:10.1016/j.earscirev.2009.07.002.
  • Callow RHT, McIlroy D, Brasier MD. 2011a. John Salter and the Ediacara Fauna of the Longmyndian Supergroup. Ichnos. 18(3):176–187. doi:10.1080/10420940.2011.606516.
  • Calver CR, Lindsay JF. 1998. Ediacarian sequence and isotope stratigraphy of the Officer Basin, South Australia. Aust J Earth Sci. 45(4):513–532. doi:10.1080/08120099808728409.
  • Carvalho CND, Pereira B, Klompmaker A, Baucon A, Moita JA, Pereira P, Machado S, Belo J, Carvalho J, Mergulhão L. 2016. Running crabs, walking crinoids, grazing gastropods: behavioral diversity and evolutionary implications in the Cabeço da Ladeira lagerstätte (Middle Jurassic, Portugal). Comunicações Geológicas. 103:39–54.
  • Chen Z, Zhou C, Meyer M, Xiang K, Schiffbauer JD, Yuan X, Xiao S. 2013. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Res. 224:690–701. doi:10.1016/j.precamres.2012.11.004.
  • Clark TH. 1923. New fossils from the vicinity of Boston. Boston Soc Nat Hist Proc. 36:473–485.
  • Cloud PE. 1968. Pre-metazoan evolution and the origins of the Metazoa. In: Drake ET, editor. Evolution and environment. New Haven: Yale University Press; p. 1–72.
  • Conway Morris S. 1979. Middle Cambrian polychaetes from the Burgess Shale of British Columbia. R Soc Lond Philos Trans. B285:227–274.
  • Darroch SAF, Boag TH, Racicot RA, Tweedt S, Mason SJ, Erwin DH, Laflamme M. 2016. A mixed Ediacaran-metazoan assemblage from the Zaris sub-Basin, Namibia. Palaeogeogr Palaeoclimatol Palaeoecol. 459:198–208. doi:10.1016/j.palaeo.2016.07.003.
  • Darroch SAF, Sperling EA, Boag TH, Racicot RA, Mason SJ, Morgan AS, Tweedt S, Myrow P, Johnston DT, Erwin DH, Laflamme, M. 2015. Biotic replacement and mass extinction of the Ediacara biota. Proc R Soc B Biol Sci. 282(1814):20151003. doi:10.1098/rspb.2015.1003.
  • Davies NS, Liu AG, Gibling MR, Miller RF. 2016. Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes. Earth-Sci Rev. 154:210–246. doi:10.1016/j.earscirev.2016.01.005.
  • Dawson JW. 1897. Relics of Primeval life: beginning of life in the Dawn of geological time. New York: Hodder and Stoughton, 358 p.
  • Demircan H, Uchman A. 2016. Ichnology of prodelta deposits of the Mezardere Formation (late Eocene – early Oligocene) in the Gökçeada Island, Western Turkey. Geodinamica Acta. 28(1–2):86–100. doi:10.1080/09853111.2015.1113720.
  • Donnellan N. 2008. Mount Peake and Lander River, Northern Territory. 1: 250 000 geological map SF 5 30 5, 530 1. Darwin: Northern Territory Geological Survey.
  • Droser ML, Gehling JG. 2008. Synchronous aggregate growth in an abundant new Ediacaran tubular organism. Science. 319(5870):1660–1662. doi:10.1126/science.1152595.
  • Droser ML, Gehling JG, Tarhan LG, Evans SD, Hall CM, Hughes IV, Hughes EB, Dzaugis ME, Dzaugis MP, Dzaugis PW. 2019. Piecing together the puzzle of the Ediacara Biota: excavation and reconstruction at the Ediacara National Heritage site Nilpena (South Australia). Palaeogeogr Palaeoclimatol Palaeoecol. 513:132–145. doi:10.1016/j.palaeo.2017.09.007.
  • Droser ML, Tarhan LG, Gehling JG. 2017. The rise of animals in a changing environment: global ecological innovation in the late Ediacaran. Annu Rev Earth Planet Sci. 45(1):593–617. doi:10.1146/annurev-earth-063016-015645.
  • Dunn FS, Liu AG, Donoghue PC. 2018. Ediacaran developmental biology. Biol Rev. 93(2):914–932. doi:10.1111/brv.12379.
  • Elliott DA, Trusler PW, Narbonne GM, Vickers-Rich P, Morton N, Hall M, Hoffmann KH, Schneider GI. 2016. Ernietta from the late Edicaran Nama Group, Namibia. J Paleontol. 90(6):1017–1026. doi:10.1017/jpa.2016.94.
  • Erwin DH, La Flamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ. 2011. The Cambrian Conundrum: early divergence and later ecological success in the early history of animals. Science. 334(6059):1091–1097. doi:10.1126/science.1206375.
  • Evans SD, Droser ML, Gehling JG. 2015. Dickinsonia liftoff: evidence of current derived morphologies. Palaeogeogr Palaeoclimatol Palaeoecol. 434:28–33. doi:10.1016/j.palaeo.2015.02.006.
  • Evans SD, Droser ML, Gehling JG, Hejnol A. 2017. Highly regulated growth and development of the Ediacara macrofossil Dickinsonia costata. PLoS One. 12(5):e0176874. doi:10.1371/journal.pone.0176874.
  • Evans SD, Gehling JG, Droser ML. 2019a. Slime travelers: early evidence of animal mobility and feeding in an organic mat world. Geobiology. 17(5):490–509. doi:10.1111/gbi.12351.
  • Evans SD, Huang W, Gehling JG, Kisailus D, Droser ML. 2019b. Stretched, mangled, and torn: responses of the Ediacaran fossil Dickinsonia to variable forces. Geology. 47(11):1049–1053. doi:10.1130/G46574.1.
  • Fedonkin MA. 1981. Belomorskaya biota Venda (White Sea biota of the Vendian). In: Trudy Geologicheskii Instituta Akademia Nauk S.S.S.R 342. p. 100.
  • Fedonkin MA. 1985. Systematic description of Vendian Metazoa. In: Sokolov BS, Iwanowski AB, editors. The Vendian System: vol. 1 Paleontology. Berlin: Springer; p. 71–120.
  • Fedonkin MA, Gehling JG, Grey K, Narbonne GM, Vickers-Rich P, eds. 2008. The rise of animals: evolution and diversification of the Kingdom Animalia. Baltimore: Johns Hopkins Press; 244 p.
  • Fedonkin MA, Liñan E, Perejón A. 1983. Icnofósiles de las rocas precámbrico-cámbricas de la Sierra de Córdoba, España. Boletin Real Sociedad España Historia Naturales Geologia. 81:125–138.
  • Fenton CL, Fenton MA. 1937. Archaeonassa: cambrian snail trails and burrows. Am Midland Nat. 18(3):454–456. doi:10.2307/2420587.
  • Fliche P. 1906. Flore fossile du trias en Lorraine et en Franche-Comté. Societé Des Sciences Nancy Séances. 6:1–66.
  • Ford TD. 1958. Pre-cambrian fossils from Charnwood forest. Proc Yorkshire Geol Soc. 31(3):211–217. doi:10.1144/pygs.31.3.211.
  • Gehling JG. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios. 14:40–57. doi:10.2307/3515360.
  • Gehling JG. 2000. Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia. Precambrian Res. 100(1–3):65–95. doi:10.1016/S0301-9268(99)00069-8.
  • Gehling JG, Droser ML. 2012. Ediacaran stratigraphy and the biota of the Adelaide Geosyncline, South Australia. Episodes. 35(1):236–246. doi:10.18814/epiiugs/2012/v35i1/023.
  • Gehling JG, Droser ML. 2013. How well do fossil assemblages of the Ediacara Biota tell time? Geology. 41(4):447–450. doi:10.1130/G33881.1.
  • Gehling JG, Droser ML, Lyons TW, Droser ML, Lau KV, Porter SM. 2018. Ediacaran scavenging as a prelude to predation. Emerg Top Life Sci. 2(2):213–222. doi:10.1042/ETLS20170166.
  • Gehling JG, Narbonne GM, Anderson MM. 2000. The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology. 43(3):427–456. doi:10.1111/j.0031-0239.2000.00134.x.
  • Germs GJB. 1968. Discovery of a new fossil in the Nama system, South West Africa. Nature. 219(5149):53–54. doi:10.1038/219053a0.
  • Germs GJB. 1973. A reinterpretation of Rangea schneiderhoehni and the discovery of a related new fossil from the Nama Group, South West Africa. Lethaia. 6(1):1–10. doi:10.1111/j.1502-3931.1973.tb00870.x.
  • Glaessner M.F. 1969. Trace fossils from the Precambrian and basal Cambrian. Lethaia 2, 369–393. doi:10.1111/j.1502-3931.1969.tbo1258.x
  • Glaessner MF. 1979. Precambrian. In: Robison RA, Teichert C, editors. Treatise of invertebrate paleotnology, Part A introduction. Lawrence: Geological Society of America, Boulder, and University of Kansas; p. A79–A118.
  • Glaessner MF. 1985. The dawn of animal life: a biohistorical study. Cambridge: Cambridge University Press; 245 p.
  • Glaessner MF, Wade M. 1966. The late Precambrian fossils from Ediacara, South Australia. Palaeontology. 9:599–628.
  • Glaessner MF, Walter MR. 1975. New Precambrian fossils from the Arumbera Sandstone, Northern Territory, Australia. Alcheringa. 1(1):59–69. doi:10.1080/03115517508619480.
  • Gold DA, Lyons TW, Droser ML, Lau KV, Porter SM. 2018. The slow rise of complex life as revealed through biomarker genetics. Emerg Top Life Sci. 2(2):191–199. doi:10.1042/ETLS20170150.
  • Gougeon R, Néraudeau D, Dabard M-P, Pierson-Wickmann A-C, Polette F, Poujol M, Saint-Martin J-P. 2018. Trace fossils from the Brioverian (Ediacaran–Fortunian) in Brittany (NW France). Ichnos. 25(1):11–24. doi:10.1080/10420940.2017.1308865.
  • Grazhdankin D, Gerdes G. 2007. Ediacaran microbial colonies. Lethaia. 40(3):201–210. doi:10.1111/j.1502-3931.2007.00025.x.
  • Grazhdankin D, Seilacher A. 2002. Underground Vendobionta from Namibia. Palaeontology. 45(1):57–78. doi:10.1111/1475-4983.00227.
  • Grey K. 2005. Ediacaran palynology of Australia. Assoc Australas Palaeontol Memoir. 31:439.p.
  • Gureev YA. 1987. Morphological analysis and systematics of Vendiata. Akademiya Nauk Ukrainskoy SSSR, Institut Geologicheskikh. 87(15):1–54.
  • Haines P.W. 1991. Early Cambrian shelly fossils from the Arumbera Sandstone, Amadeus Basin, Northern Territory. Alcheringa. 15,150. doi:10.1080/03115519108619014.
  • Hall CMS, Droser ML, Clites EC, Gehling JG. 2018. The short-lived but successful tri-radial body plan: a view from the Ediacaran of Australia. Aust J Earth Sci. 1–11. doi:10.1080/08120099.2018.1472666.
  • Häntschel W. 1975. Trace fossils and problematica. In: Moore RC, editor. Treatise on invertebrate paleontology, part W. 2nd ed. ed. Boulder and Lawrence: Geological Society of America and University of Kansas; p. 269 p.
  • Häntzschel W. 1975. Trace fossils and problematica. In: Moore RC, editor. Treatise on invertebrate paleontology. Part. W. Miscellanea. Supplement 1. Lawrence: Geological Society of America, Boulder and University of Kansas Press; p. 1–269.
  • Harrington HJ, Moore RC. 1956. Medusae incertae sedis and unrecognizable forms. In: Moore RC, editor. Treatise on invertebrate paleontology Part F. Coelenterata. Lawrence: Geological Society of America Boulder, Boulder, and University of Kansas; p. F153–161.
  • Hoekzema RS, Brasier MD, Dunn FS, Liu AG. 2017. Quantitative study of developmental biology confirms Dickinsonia as a metazoan. Proc R Soc B Biol Sci. 284(1862):20171348. doi:10.1098/rspb.2017.1348.
  • Hoeneman M, Neiber MT, Humphreys WF, Iliffe TM, Li D.Schram FR, Koeneman,S. 2013. Phylogenetic analysis and systematic revision of Remipedia (nectiopoda) from Bayesian analysis of molecular data. J. Crustacean Biol 33, 603-619. doi:10.1163/193724-0X-00002179
  • Hofmann HJ, O’Brien SJ, King AF. 2008. Ediacaran biota on Bonavista Peninsula, Newfoundland, Canada. J Paleontol. 82(1):1–36. doi:10.1666/06-087.1.
  • Hofmann R, Mángano MG, Elicki O, Shinaq R. 2012. Paleoecologic and biostratigraphic significance of trace fossils from shallow- to marginal-marine environments from the Middle Cambrian (Stage 5) of Jordan. J Paleontol. 86(6):931–956. doi:10.1666/11-129R1.1.
  • Hoyal Cuthill JF, Han J, Álvaro J. 2018. Cambrian petalonamid Stromatoveris phylogenetically links Ediacaran biota to later animals. Palaeontology. 61(6):813–823. doi:10.1111/pala.12393.
  • Idler DR, Saito A, Wiseman P. 1968. Sterols in red algae (Rhodophyceae). Steroids. 11(4):465–473. doi:10.1016/S0039-128X(68)80062-5.
  • Inglez L, Warren LV, Okubo J, Simões MG, Quaglio F, Arrouy MJ, Netto RG. 2019. Discs and discord: the paleontological record of Ediacaran discoidal structures in the south American continent. J South Am Earth Sci. 89:319–336. doi:10.1016/j.jsames.2018.11.023.
  • International Commission on Zoological Nomenclature. 2012. Amendment of articles 8, 9, 10, 21 and 78 of the international code of zoological nomenclature to expand and refine methods of publication. ZooKeys. 219:1–10. doi:10.3897/zookeys.219.3944.
  • Ivantsov AY. 2007. Small Vendian transversely articulated fossils. Paleontol J. 41(2):113–122. doi:10.1134/S0031030107020013.
  • Ivantsov AY, Malakhovskaya YE. 2002. Giant traces of Vendian animals. Doklady Earth Sci. 385A:618–622.
  • Ivantsov AY, Narbonne GM, Trusler PW, Greentree C, Vickers-Rich P. 2016. Elucidating Ernietta : new insights from exceptional specimens in the Ediacaran of Namibia. Lethaia. 49(4):540–554. doi:10.1111/let.12164.
  • Jenkins RJF. 1992. Functional and ecological aspects of Ediacaran assemblages. In: Lipps JH, Signor PW, editors. Origin and early evolution of the Metazoa. New York: Plenum Press; p. 131–176.
  • Jenkins RJF, Nedin C. 2007. The provenance and palaeobiology of a new multi-vaned, chambered frondose organism from the Ediacaran (later Neoproterozoic) of South Australia. In: Vickers-Rich P, Komarower P, editors. The rise and fall of the Ediacaran Biota. Geological Society, London Special Publications, 286; p. 195–222.
  • Jenkins RJF, McKirdy DM, Foster CB, O'Leary T, Pell SD. 1992. The record and stratigraphic implications of organic-walled microfossils from, the Ediacaran (terminal Proterozoic) of South Australia. Geol Mag. 129:401–410. doi:10.1017/S001675680001949X.
  • Jenkins RJF, Plummer PS, Moriarty KC. 1981. Late Precambrian pseudofossils from the Flinders Ranges, South Australia. R Soc South Aust Trans. 105:67–83.
  • Jensen S. 2003. The Proterozoic and Earliest Cambrian Trace Fossil Record; Patterns, Problems and Perspectives. Integr Comp Biol. 43(1):219–228. doi:10.1093/icb/43.1.219.
  • Jensen S, Droser ML, Gehling JG. 2005. Trace fossil preservation and the early evolution of animals. Palaeogeogr Palaeoclimatol Palaeoecol. 220(1–2):19–29. doi:10.1016/j.palaeo.2003.09.035.
  • Johnson ME, Tesakov YI, Predtetchensky NN, Baarli BG. 1997. Comparison of Lower Silurian shores and shelves in North America and Siberia. Klapper G, Murphy MA, Talent JA editors. Paleozoic sequence stratigraphy, biostratigraphy, and biogeography: studies in honor of J. Granville (“Jess’) Johnson. Geological Society of America Special Paper, 321. Boulder, Colorado: Geological Society of America; p. 23–46.
  • Kennard JM. 1991. Lower Cambrian archaeocyathan buildups, Todd River Dolomite, northeast Amadeus Basin, central Australia: sedimentology and diagenesis. In: Korsch RJ, Kennard JM, editors. Geological and geophysical studies in the Amadeus Basin, Central Australia. Canberra: Bureau of Geology and Geophysics Canberra Bulletin, 236; p. 195–225.
  • Kirschvink JL. 1978. The Precambrian-Cambrian boundary problem: paleomagnetic directions from the Amadeus Basin, Central Australia. Earth Planet Sci Lett. 40(1):91–100. doi:10.1016/0012-821X(78)90077-8.
  • Kolesnikov AV, Danelian T, Gommeaux M, Maslov AV, Grazhdankin DV. 2017. Arumberiamorph structure in modern microbial mats: implications for Ediacaran palaeobiology. Bulletin de la Société Géologique de France. 188(1–2):1–10. doi:10.1051/bsgf/2017006.
  • Kolesnikov AV, Grazhdankin DV, Maslov AV. 2012. Arumberia-type structures in the Upper Vendian of the Urals. Doklady Earth Sci. 447(1):1233–1239. doi:10.1134/S1028334X12110013.
  • Kruse PD, West PW. 1980. Archaeocyatha of the Amadeus and Georgina basins. BMR J Aust Geol Geophys. 5:165–181.
  • Kumar S, Ahmad S. 2012. Restudy of an Ediacaran medusoid Marsonia artiyansis Raghav et al., 2005, from the Jodhpur Sandstone, Jodhpur district, western Rajasthan. Paleontol Soc India J. 57:135–142.
  • Kumar S, Ahmad S. 2014. Microbially induced sedimentary structures (MISS) from the Ediacaran Jodhpur Sandstone, Marwar Supergroup, western Rajasthan. J Asian Earth Sci. 91:352–361. doi:10.1016/j.jseaes.2014.01.009.
  • Kumar S, Pandey SK. 2008. Arumberia and associated fossils from the Neoproterozoic Maihar Sandstone, Vindhyan Supergroup, Central India. Paleontol Soc India J. 53:83–97.
  • Kumar S, Pandey SK. 2009. Note on the occurrence of Arumberia banksi and associated fossils from the Jodhpur Sandstone, Marwar Supergroup, Western Rajasthan. Palaeontol Soc India J. 54:171–178.
  • Laflamme M, Narbonne GM, Greentree C, Anderson MM. 2007. Morphology and taphonomy of an Ediacaran frond: Charnia from the Avalon Peninsula of Newfoundland. In: Vickers-Rich P, Komarower P, editors. The Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publication, 286; p. 237–257.
  • Laflamme M, Flude LI, Narbonne GM. 2012. Ecological tiering and the evolution of a stem: the oldest stemmed frond from the Ediacaran of Newfoundland, Canada. J Paleontol. 86(2):193–200. doi:10.1666/11-044.1.
  • Laflamme M, Gehling JG, Droser ML. 2018. Deconstructing an Ediacaran frond: three-dimensional preservation of Arborea from Ediacara, South Australia. J Paleontol. 92(3):323–335. doi:10.1017/jpa.2017.128.
  • Laflamme M.Narbonne G.M. 2008. Ediacaran fronds. Palaeogeogr Palaeoclim Palaeoec 258, 162–179 doi:10.1016/j.palaeo.2007.05.020 3 258
  • Laflamme M, Narbonne GM, Anderson MM. 2004. Morphometric analysis of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland. J Paleontol. 78(5):827–837. doi:10.1666/0022-3360(2004)078<0827:MAOTEF>2.0.CO;2.
  • Laurie JR. 1986. Phosphatic fauna of the Early Cambrian Todd River Dolomite, Amadeus Basin, central Australia. Alcheringa. 10(4):431–454. doi:10.1080/03115518608619151.
  • Laurie JR, Shergold JH. 1985. Phosphatic organisms and the correlation of Early Cambrian carbonate formations in central Australia. BMR J Aust Geol Geophys. 9:83–89.
  • Lebesconte P. 1887. Constitution générale du Massif Breton compare à celle du Finisterre. Bulletin de la Société Géologique de France. 14:776–820.
  • Lebesconte P. 1891. Les poudingues rouges de Montfort. Revue des Sciences Naturelles de l’Ouest. 3:1–8.
  • Liu AG. 2011. Reviewing the Ediacaran fossils of the Long Mynd, Shropshire. Shropshire Geol Soc Proc. 16:31–43.
  • Liu AG, Brasier MD, Bogolepova OK, Raevskaya EG, Gubanov AP. 2013b. First report of a newly discovered Ediacaran biota from the Irkineeva Uplift, East Siberia. Newsl Stratigr. 46(2):95–110. doi:10.1127/0078-0421/2013/0031.
  • Liu AG, Kenchington CG, Mitchell EG. 2015. Remarkable insights into the paleoecology of the Avalonian Ediacaran macrobiota. Gondwana Res. 27(4):1355–1380. doi:10.1016/j.gr.2014.11.002.
  • Liu AG, Matthews JJ, McIlroy D, Álvaro J. 2016. The Beothukis/Culmofrons problem and its bearing on Ediacaran macrofossil taxonomy: evidence from an exceptional new fossil locality. Palaeontology. 59(1):45–58. doi:10.1111/pala.12206.
  • Liu AG, McIlroy D, Antcliffe JB, Brasier MD. 2011. Effaced preservation in the Ediacara biota and its implications for the early macrofossil record. Palaeontology. 54(3):607–630. doi:10.1111/j.1475-4983.2010.01024.x.
  • Liu AG, McIlroy D, Matthews JJ, Brasier MD. 2012. A new assemblage of juvenile Ediacaran fronds from the Drook Formation, Newfoundland. J Geol Soc. 169(4):395–403. doi:10.1144/0016-76492011-094.
  • Liu AG, McIlroy D, Matthews JJ, Brasier MD. 2013a. Exploring an Ediacaran ‘nursery’: growth, ecology and evolution in a rangeomorph palaeocommunity. Geol Today. 29(1):23–26. doi:10.1111/j.1365-2451.2013.00860.x.
  • Liu X-L. 1981. Metazoan fossils from Mashan Group near Jixi, Heilongjiang. Chin Acad Sci Bull. 3:71–83. in Chinese, English abstract.
  • Luo M, Shi GR, Hu S, Benton MJ, Chen Z-Q, Huang J, Zhang Q, Zhou C, Wen W. 2019. Early Middle Triassic trace fossils from the Luoping Biota, southwestern China: evidence of recovery from mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol. 515:6–22. doi:10.1016/j.palaeo.2017.11.028.
  • MacGabhann BA. 2007. Discoidal fossils of the Ediacaran: a review of current understanding. In: Vickers-Rich P, Komarower P, editors. The rise and fall of the Ediacaran biota.. Geological Society of London Special Publication, 286; p. 297–313.
  • Mángano MG, Buatois LA, Guinea FM. 2005. Ichnology of the Alfarcito Member (Santa Rosita Formation) of northwestern Argentina: animal-substrate interactions in a lower Paleozoic wave-dominated shallow sea. Ameghiniana. 42:641–668.
  • Mángano MG, Buatois LA, Hofmann R, Elicki O, Shinaq R. 2013. Exploring the aftermath of the Cambrian explosion: the evolutionary significance of marginal- to shallow-marine ichnofaunas of Jordan. Palaeogeogr Palaeoclimatol Palaeoecol. 374:1–15. doi:10.1016/j.palaeo.2012.05.029.
  • Mapstone NB, McIlroy D. 2006. Ediacaran fossil preservation: taphonomy and diagenesis of a discoid biota from the Amadeus Basin, central Australia. Precambrian Res. 149(3–4):126–148. doi:10.1016/j.precamres.2006.05.007.
  • Martinsson A. 1970. Toponomy of trace fossils. Geol J Spec Issue. 3:323–330.
  • McCall GJ. 2006. The Vendian (Ediacaran) in the geological record: enigmas in geology’s prelude to the Cambrian explosion. Earth-Sci Rev. 77(1–3):1–229. doi:10.1016/j.earscirev.2005.08.004.
  • McIlroy D, Crimes TP, Pauley JC 2005. Fossils and matgrounds from the Neoproterozoic Longmyndian Supergroup, Shropshire, UK. Geological Magazine, 142, 441–445.
  • McIlroy D, Jenkins RJF, Walter MR. 1997. The nature of the Proterozoic-Cambrian transition in the northern Amadeus Basin, central Australia. Precambrian Res. 86(1–2):93–113. doi:10.1016/S0301-9268(97)00044-2.
  • McIlroy D, Walter MR. 1997. A reconsideration of the biogenicity of Arumberia banksi Glaessner & Walter. Alcheringa. 21(1):79–80. doi:10.1080/03115519708619187.
  • Meert J.G, Levashova N.M, Bazhenov, M.L., Landing E. 2016. Rapid change of magnetic field polarity in the late Ediacaran: linking the Cambrian evolutionary radiation and increased UV-B radiation. Gondwana Research. 34:149-154. doi:10.1016/j.gr.2016.01.001
  • Melchor RN. 2003. Invertebrate and vertebrate trace fossils from a Triassic lacustrine delta: the Los Rastros Formation, Ischigualasto Provincial Park, San Juan, Argentina. Publicación Electrónica De La Asociación Paleontológica Argentina. 9:17–33.
  • Menon LR, McIlroy D, Brasier MD. 2017. ‘Intrites’ from the Ediacaran Longmyndian Supergroup, UK: a new form of microbially-induced sedimentary structure (MISS). In: Brasier AT, McIlroy D, McLoughlin N, editors. Earth system evolution and early life: a celebration of the work of Martin Brasier.. Geological Society London Special Publication, 448; p. 271–283.
  • Menon LR, McIlroy D, Brasier MD. 2013. Evidence for Cnidaria-like behavior in ca. 560 Ma Ediacaran Aspidella. Geology. 41(8):895–898. doi:10.1130/G34424.1.
  • Meyer DL, Brett CE, Dattilo BF, Fine R. 2016. Inverted trilobites: key to complex preservation of an organically textured surface in offshore siliciclastic mudstone and carbonate facies: Kope Formation (upper Ordovician), Kenton County, Kentucky, USA. Palaios. 31(10):453–462. doi:10.2110/palo.2016.028.
  • Meyer M, Xiao S, Gill BC, Schiffbauer JD, Chen Z, Zhou C, Yuan X. 2014. Interactions between Ediacaran animals and microbial mats: insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China. Palaeogeogr Palaeoclimatol Palaeoecol. 396:62–74. doi:10.1016/j.palaeo.2013.12.026.
  • Minguez D, Kodama KP. 2017. Rock magnetic chronostratigraphy of the Shuram carbon isotope excursion: Wonoka Formation, Australia. Geology. 45(6):567–570. doi:10.1130/G38572.1.
  • Minicucci JM. 2017. Who was the first person known to have discovered fossils of the Precambrian (Ediacaran) organism Aspidella terranovica? Geosci Can. 44(1):55–61. doi:10.12789/geocanj.2017.44.115.
  • Narbonne GM. 2005. The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annu Rev Earth Planet Sci. 33(1):421–442. doi:10.1146/annurev.earth.33.092203.122519.
  • Narbonne GM, Gehling JG, Vickers-Rich P. 2007. The misty coasts of Newfoundland. In: Fedonkin MA, Gehling JG, Grey K, Narbonne GM, Vickers-Rich P, editors. The rise of animals: evolution and diversification of the Kingdom Animalia. Baltimore: John Hopkins Press; p. 53–68.
  • Narbonne GM, Gehling JG. 2003. Life after snowball: the oldest complex Ediacaran fossils. Geology. 31(1):27–30. doi:10.1130/0091-7613(2003)031<0027:LASTOC>2.0.CO;2.
  • Narbonne GM, LaFlamme M, Greentree C, Trusler P. 2009. Reconstructing a lost world: Ediacaran rangeomorphs from Spaniard’s Bay, Newfoundland. J Paleontol. 83(4):503–523. doi:10.1666/08-072R1.1.
  • Neraudeau D, Dabard M-P, El Albani A, Gougeon R, Mazurier A, Pierson-Wickmann A-C, Poujol M, Saint Martin J-P, Saint Martin S. 2018. First evidence of Ediacaran-Fortunian elliptical body fossils in the Brioverian series of Brittany, NW France. Lethaia. 51(4):513–522. doi:10.1111/let.12270.
  • Nesterovsky VA, Martyshyn AI, Chupryna AM. 2018. New biocenosis model of Vendian (Ediacaran) sedimentation basin of Podilia (Ukraine). J Geol Geogr Geoecol. 27(1):95–107. doi:10.15421/111835.
  • Noffke N. 2010. Geobiology: microbial mats in sandy deposits from the Archean Era to today. Berlin: Springer; p. 194 p.
  • Noffke N, Eriksson KA, Hazen RM, Simpson EL. 2006. A new window into early Archean life: microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology. 34(4):253–256. doi:10.1130/G22246.1.
  • Parihar VS, Gaur V, Nama SL, Mathur SC 2015. New report of Arumberia banksi (Ediacaran affinity) mat structures from the Girbhakar Sandstone of Marwar Supergroup, Bhopalgarh area, Jodhpur, Western Rajasthan, India. Frontiers of Earth Science, 6, 385–392.
  • Pazos PJ, Di Pasquo M, Amenazar CR. 2007. Trace fossils of the glacial to post-glacial transition in the El imperial formation (upper Carboniferous), San Rafael Basin, Argentina. In: Bromley RG, Buatois LA, Mángano MG, Genise JF, Melchor RN, editors. Sediment–organism interactions: a multifaceted ichnology. Society for Economic Paleontology and Mineralogy Special Publication, 88; p. 137–147.
  • Peng S., Babcock L.E. Cooper R.E. 2012. Cambrian. In: Gradstein, F.W., Ogg, J.G., Schmitz, M., Ogg, G, editors. Geologic time scale. 2012. Amsterdam: Elsevier, p. 437–488. doi:10.1016/B978-0-444-59425-9.00019-6
  • Peterson KJ, Waggoner, B Hagadorn, JW 2003. A fungal analog for Newfoundland Ediacaran fossils? Integr Comp Biol. 43(1):127–136. doi:10.1093/icb/43.1.127.
  • Pflug HD. 1966. Neue Fossilreste aus den Nama-Schichten in Südwest-Afrika. Paläontologische Zeitschrift. 40(1–2):14–25. doi:10.1007/BF02987628.
  • Pflug H-D. 1972. Systematik der jung-präkambrischen PetalonamaePflug 1970. Paläontologische Zeitschrift. 46(1–2):56–67. doi:10.1007/BF02989552.
  • Popov V, Iosifidi A, Khramov A, Tait J, Bachtadse V. 2002. Paleomagnetism of Upper Vendian sediments from the Winter Coast, White Sea region, Russia: implications for the paleogeography of Baltica during Neoproterozoic times. J Geophys Res Solid Earth. 107(B11):EPM–10. doi:10.1029/2001JB001607.
  • Potter PE, Pettijohn FJ. 1963. Paleocurrents and basin analysis. Berlin: Springer; p. 295 p.
  • Razumovskiy AA, Ivantsov AY, Novikov IA, Korochantsev AV. 2015. Kuckaraukia multituberculata: A new Vendian fossil from the Basa Formation of the Asha Group in the South Urals. Paleontol J. 49(5):449–456. doi:10.1134/S0031030115050111.
  • Reid LM, Holmes JD, Payne JL, García-Bellido DC, Jago JB. 2018. Taxa, turnover and taphofacies: a preliminary analysis of facies-assemblage relationships in the Ediacara Member (Flinders Ranges, South Australia). Aust J Earth Sci. 1–10. doi:10.1080/08120099.2018.1488767.
  • Retallack GJ. 1994. Were the Ediacaran fossils lichens? Paleobiology. 20(4):523–544. doi:10.1017/S0094837300012975.
  • Retallack GJ. 2007. Growth, decay and burial compaction of Dickinsonia, an iconic Ediacaran fossil. Alcheringa. 31(3):215–240. doi:10.1080/03115510701484705.
  • Retallack GJ. 2009. Cambrian–Ordovician non-marine fossils from South Australia. Alcheringa. 33(4):355–391. doi:10.1080/03115510903271066.
  • Retallack GJ. 2012. Criteria for distinguishing microbial mats and earths. In: Noffke N, Chafetz H, editors. Microbial mats in siliciclastic sediments. Society of Economic Paleontologists and Mineralogists Special Paper, 101; Tulsa Oklahoma; p. 136–152.
  • Retallack GJ. 2013a. Ediacaran life on land. Nature. 493(7430):89–92. doi:10.1038/nature11777.
  • Retallack GJ. 2013b. Comment on “Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors” by Chen et al. [Precambrian Res. 224 (2013) 690–701]. Precambrian Res. 231:383–385. doi:10.1016/j.precamres.2013.04.005.
  • Retallack GJ. 2013c. Early Cambrian humid, tropical, coastal paleosols from Montana, USA. In: Driese, SG,  Nordt LE, editors. New frontiere in paleopedology and terrestrial paleoclimatology: paleosols and soil surface analog systems. Society of Economic Paleontologists and Mineralogists Special Publication Tulsa Oklahoma 104, 257–272. doi:10.2110/sepmsp.104.09.
  • Retallack GJ. 2015a. Reassessment of the Silurian problematicum Rutgersella as another post-Ediacaran vendobiont. Alcheringa. 39(4):573–588. doi:10.1080/03115518.2015.1069483.
  • Retallack GJ. 2015b. Acritarch evidence of a late Precambrian adaptive radiation of Fungi. Botanica Pacifica. 4:19–33.
  • Retallack GJ. 2016a. Ediacaran fossils in thin-section. Alcheringa. 40(4):583–600. doi:10.1080/03115518.2016.1159412.
  • Retallack GJ. 2016b. Field and laboratory tests for recognition of Ediacaran paleosols. Gondwana Res. 36:94–110. doi:10.1016/j.gr.2016.05.001.
  • Retallack GJ. 2016c. Ediacaran sedimentology and paleoecology of Newfoundland reconsidered. Sediment Geol. 333:15–31. doi:10.1016/j.sedgeo.2015.12.001.
  • Retallack GJ. 2017. Comment on: “Dickinsonia liftoff: evidence of current derived morphologies” by S. D. Evans, M. L. Droser, and J.G. Gehling. Palaeogeogr Palaeoclimatol Palaeoecol. 485:999–1001. doi:10.1016/j.palaeo.2015.07.005.
  • Retallack GJ. 2018a. Dickinsonia steroids not only in animals. Science. 361:1246. eletter: http://science.sciencemag.org/content/361/6408/1246/tab-e-letters.
  • Retallack GJ. 2018b. Reassessment of the Devonian problematicum Protonympha as another post-Ediacaran vendobiont. Lethaia. 51(3):406–423. doi:10.1111/let.12253.
  • Retallack GJ. 2019. Interflag sandstone laminae, a novel sedimentary structure, with implications for Ediacaran paleoenvironments. Sediment Geol. 379:60–76. doi:10.1016/j.sedgeo.2018.11.003.
  • Retallack GJ, Marconato A, Osterhout JT, Watts KE, Bindeman IN. 2014. Revised Wonoka isotopic anomaly in South Australia and Late Ediacaran mass extinction. J Geol Soc. 171(5):709–722. doi:10.1144/jgs2014-016.
  • Runnegar B. 1982. Oxygen requirements, biology and phylogenetic significance of the late Precambrian worm Dickinsonia, and the evolution of the burrowing habit. Alcheringa. 6(3):223–239. doi:10.1080/03115518208565415.
  • Runnegar BN, Fedonkin MA. 1991. Proterozoic metazoan body plans. In: Schopf JW, Klein C, editors. The Proterozoic biosphere: a multidisciplinary study. Cambridge: Cambridge University Press; p. 369–388.
  • Salter JW. 1856. On fossil remains in the Cambrian Rocks of the Longmynd and North Wales. Q J Geol Soc. 12(1–2):246–251. doi:10.1144/GSL.JGS.1856.012.01-02.31.
  • Salter JW. 1857. On Annelide-burrows and surface-markings from the Cambrian Rocks of the Longmynd no. 2. Q J Geol Soc. 13(1–2):199–206. doi:10.1144/GSL.JGS.1857.013.01-02.29.
  • Sappenfield A, Droser ML, Gehling JG. 2011. Problematica, trace fossils, and tubes within the Ediacara Member (South Australia): redefining the Ediacaran trace fossil record one tube at a time. J Paleontol. 85(2):256–265. doi:10.1666/10-068.1.
  • Schatz ER, Mángano MG, Aitken AE, Buatois LA. 2013. Response of benthos to stress factors in Holocene Arctic fjord settings: Maktak, Coronation, and North Pangnirtung Fjords, Baffin Island, Canada. Palaeogeogr Palaeoclimatol Palaeoecol. 386:652–668. doi:10.1016/j.palaeo.2013.06.030.
  • Schmid S. 2017a. Chemostratigraphy and palaeo-environmental characterisation of the Cambrian stratigraphy in the Amadeus Basin, Australia. Chem Geol. 451:169–182. doi:10.1016/j.chemgeo.2017.01.019.
  • Schmid S. 2017b. Neoproterozoic evaporites and their role in carbon isotope chemostratigraphy (Amadeus Basin, Australia). Precambrian Res. 290:16–31. doi:10.1016/j.precamres.2016.12.004.
  • Schmidt PW, Williams GE. 2010. Ediacaran palaeomagnetism and apparent polar wander path for Australia: no large true polar wander. Geophys J Int. 182(2):711–726. doi:10.1111/j.1365-246X.2010.04652.x.
  • Seilacher A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. J Geol Soc. 149(4):607–613. doi:10.1144/gsjgs.149.4.0607.
  • Seilacher A. 2007. Trace fossil analysis. Berlin: Springer. 238 p.
  • Seilacher A, Buatois LA, Mángano MG. 2005. Trace fossils in the Ediacaran–Cambrian transition: behavioral diversification, ecological turnover and environmental shift. Palaeogeogr Palaeoclimatol Palaeoecol. 227(4):323–356. doi:10.1016/j.palaeo.2005.06.003.
  • Shapiro JA. 1998. Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol. 52(1):81–104. doi:10.1146/annurev.micro.52.1.81.
  • Sharma M, Mathur SC. 2014. Arumberia-like Ediacaran mat structure from Sonia Sandstone, Marwar Supergroup, Rajasthan, India. In: Shrivastava KL, Kumar A, editors. New Dehli: Scientific Publishers; p. 626–631.
  • Sharma M, Kumar S, Tiwari M, Shukla Y, Pandey SK, Srivastava P, Banerjee S. 2012. Palaeobiological constraints and the Precambrian biosphere: Indian evidence. Indian Natl Sci Acad Proc. 78:407–422.
  • Shaw RD, Warren RG. 1975. Alcoota, NT, 1:250,000 geological series map SF53/10. Canberra: Bureau of Mineral Resources, Geology and Geophysics.
  • Shaw RD, Wells A. 1983. Alice Springs, NT 1: 250,000 geological series map sheet SF/53-14. Canberra: Bureau of Mineral Resources, Geology and Geophysics.
  • Shen B, Xiao S, Zhou CYuan X. 2009. Yangtziramulus zhangi new genus and species, a carbonate-hosted macrofossil from the Ediacaran Dengying Formation in the Yangtze Gorges, area, south China. Journal of Paleontology. 83:575-587. doi:10.1666/08-042R1.1.
  • Shu D-G. 2006. Lower Cambrian vendobionts from China and early diploblast evolution. Science. 312(5774):731–734. doi:10.1126/science.1124565.
  • Smith EF, Nelson LL, Tweedt SM, Zeng H, Workman JB. 2017. A cosmopolitan late Ediacaran biotic assemblage: new fossils from Nevada and Namibia support a global biostratigraphic link. Proc R Soc B Biol Sci. 284(1858):e20170934. doi:10.1098/rspb.2017.0934.
  • Sperling EA, Vinther J. 2010. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evol Dev. 12(2):201–209. doi:10.1111/j.1525-142X.2010.00404.x.
  • Sprigg RC. 1947. Early Cambrian (?) jellyfishes from the Flinders Ranges, South Australia. R Soc South Aust Trans. 71:212–224.
  • Steiner M, Reitner J. 2001. Evidence of organic structures in Ediacara-type fossils and associated microbial mats. Geology. 29(12):1119–1122. doi:10.1130/0091-7613(2001)029<1119:EOOSIE>2.0.CO;2.
  • Stimson MR, Miller RF, MacRae RA, Hinds SJ. 2017. An ichnotaxonomic approach to wrinkled microbially induced sedimentary structures. Ichnos. 24(4):291–316. doi:10.1080/10420940.2017.1294590.
  • Tarhan LG, Droser ML, Gehling JG, Dzaugis MP. 2015. Taphonomy and morphology of the Ediacara form genus Aspidella. Precambrian Res. 257:124–136. doi:10.1016/j.precamres.2014.11.026.
  • Termier H, Termier G. 1968. Evolution et biocinése. Paris: Masson; p. 241.
  • Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kusber WH, Li DZ, Marhold K, et al. 2017. International code of nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile. 159:254.
  • Valentine JW. 1992. Dickinsonia as a polypoid organism. Paleobiology. 18(4):378–382. doi:10.1017/S0094837300010952.
  • Vodanjuk SA. 1989. Ostaki besskeletnykh metazoan iz khatyspytskoj svity Olenekskogo podnatija (Remains of non-skeletal metazoa from Khatyspyt formation on the Olenek Uplift). In: Khomentovskij VV, Sovietov JK, editors. Pozdnii dokembry and rannii paleozoi Sibiri, (knowledge of Precambrian and early Paleozoic of Siberia). Novosibirsk: Akademia Nauk SSSR; p. 61–75.
  • Wade M. 1968. Preservation of soft-bodied animals in Precambrian sandstones at Ediacara, South Australia. Lethaia. 1(3):238–267. doi:10.1111/j.1502-3931.1968.tb01740.x.
  • Wade M. 1969. Medusae from uppermost Precambrian or Cambrian sandstones in central Australia. Palaeontology. 12:351–365.
  • Wade M. 1970. The stratigraphic distribution of the Ediacara fauna in Australia. R Soc South Aust Trans. 94:87–104.
  • Wade M. 1972. Dickinsonia: polychaete worms from the late Precambrian Ediacara fauna, South Australia. Queensland Museum Memoir. 16:171–190.
  • Walter MR, Elphinstone R, Heys GR. 1989. Proterozoic and early Cambrian trace fossils from the Amadeus and Georgina Basins, central Australia. Alcheringa. 13(3):209–256. doi:10.1080/03115518908527821.
  • Walter MR, Krylov IN, Preiss WV. 1979. Stromatolites from Adelaidean (Late Proterozoic) sequences in central and South Australia. Alcheringa. 3(4):287–305. doi:10.1080/03115517908527799.
  • Walter MR, Veevers JJ, Calver CR, Grey K. 1995. Neoproterozoic stratigraphy of the Centralian Superbasin, Australia. Precambrian Res. 73(1–4):173–195. doi:10.1016/0301-9268(94)00077-5.
  • Weete JD, Abril M, Blackwell M, Butler G. 2010. Phylogenetic distribution of fungal sterols. PLoS One. 5(5):e10899. doi:10.1371/journal.pone.0010899.
  • Went DJ. 2005. Pre-vegetation alluvial fan facies and processes: an example from the Cambro-Ordovician Rozel Conglomerate Formation, Jersey, Channel Islands. Sedimentology. 52(4):693–713. doi:10.1111/j.1365-3091.2005.00716.x.
  • Wood R, Liu A, Bowyer F, Wilby P, Dunn F, Kenchington C, Hoyal Cuthill J, Mitchell E, Penny A. 2019. Integrated records of environmental change and evolution challenge the Cambrian explosion. Nat Ecol Evol. 3(4):528–538. doi:10.1038/s41559-019-0821-6.
  • Xiao S, Laflamme M. 2009. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol Evol. 24(1):31–40. doi:10.1016/j.tree.2008.07.015.
  • Xiao S, Shen B, Zhou C, Xie G, Yuan X. 2005. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proc Natl Acad Sci. 102(29):10227–10232. doi:10.1073/pnas.0502176102.
  • Yochelson EL, Fedonkin MA. 1997. The type specimens (Middle Cambrian) of the trace fossil Archaeonossa Fenton and Fenton. CanJ Earth Sci. 34(9):1210–1219. doi:10.1139/e17-097.
  • Yuan X-L., Xiao, S.-H, Taylor, T.N. 2005. Lichen-like symbiosis 600 million years ago. Science. 308(5724):1017–1020. doi:10.1126/science.1111347.
  • Zhuravlev AY. 1993. Were Vend-Ediacaran multicellular Metazoa? Neues Jahrbuch für Geologie und Paläontologie Abhandlungen. 190:299–314.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.