Publication Cover
Historical Biology
An International Journal of Paleobiology
Volume 33, 2021 - Issue 10
275
Views
4
CrossRef citations to date
0
Altmetric
Articles

Palaeoenvironmental and taphonomic biases in palynological assemblages preserved in amber versus sediments from the Umarsar Lignite, Kutch Basin, Gujarat, India

Pages 2305-2315 | Received 31 Dec 2019, Accepted 30 Jun 2020, Published online: 16 Jul 2020

References

  • Alimohammadian H, Sahni A, Patnaik R, Rana RS, Singh H. 2005. First record of an exceptionally diverse and well preserved amber-embedded biota from lower Eocene (~52 Ma) Lignites, Vastan, Gujarat. Curr Sci. 89:1328–1330.
  • Anderson RY. 1960. Cretaceous-Tertiary palynology, eastern side of the San Juan Basin. New Maxico:State Bureau of Mines and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, New Mexico, Memoir. Vol. 6 p.1–59.
  • Arillo A, Ortuno VM. 2005. Catalogue of fossil insect species described from Dominican amber (Miocene). Stuttgarter Beitr Naturk B. 352(68):1–68.
  • Beimforde C, Schäfer N, Dörfelt H, Nascimbene PC, Singh H, Heinrichs J, Reitner J, Rana RS, Schmidt AR. 2011. Ectomycorrhizas from a Lower Eocene angiosperm forest. New Phytologist. 192:988–996. doi:10.1111/j.1469-8137.2011.03868.x.
  • Biswas B. 1962. Stratigraphy of the Mahadeo, Langpur, Cherra and Tura formations Assam, India. Bull Geol Min Metall Soc India. 25:1–48.
  • Biswas SK. 1992. Tertiary stratigraphy of Kutch. Jour Palaeontol, Soc India. 37:1–29.
  • Conwentz H. 1886. Die Angiospermen des Bernsteins. In: Goppert HR, Men-ge A, editors. Die Flora des Bernsteins undihre Beziehungen zur Flora der Tertiarformation und der Gegenwart, 2. Band. Danzig: En-glmann; p. 1–140.
  • Conwentz H. 1890. Monographie der bal-tischen Bernsteinbaume: vergleichende Untersuchungen uber die vegetationsor-gane und Bluten, sowie uber das Harz und die Krankheiten der baltischen Bernstein- baume. Danzig: Engelmann; p. 1–151.
  • Couper RA. 1953. Distribution of Proteaceae, Fagaceae and Podocarpaceae in some southern hemisphere Cretaceous and Tertiary beds. N Z JI Sci Tech Sect B. 35(3):247–250.
  • Dutta S, Mallick M. 2017. Chemical evidence for dammarenediol, a biotic angiosperm metabolite, from 54 Ma old fossil resins. Rev Palaeobot Palynology. 237:96–99. doi:10.1016/j.revpalbo.2016.11.004.
  • Dutta S, Mallick M, Bertram N, Greenwood PF, Mathews RP. 2009. Terpenoid composition and class of Tertiary resins from India. Int J Coal Geol. 80:44–50. doi:10.1016/j.coal.2009.07.006.
  • Dutta S, Saxena R, Singh H. 2014. Exceptional preservation of angiosperm markers in Miocene and Eocene ambers. Geol. 42:155–158. doi:10.1130/G34975.1.
  • Dutta S, Tripathi SKM, Mallick M, Mathews RP, Greenwood PF, Rao MR, Summons RE. 2011. Eocene out-of-India dispersal of Asian dipterocarps. Rev Palaeobot Palynology. 166:63–68. doi:10.1016/j.revpalbo.2011.05.002.
  • Dutta SK, Sah SCD. 1970. Palynostratigraphy of the Tertiary sedimentary formations of Assam: 5. Stratigraphy and palynology of South Shilong Plateau. Palaeontographica. 131B(1–4):1–62.
  • Elisk WC. 1968. Palynology of a Palaeocene Rockdale lignite, Milam country, Texas, I. Morphology and Taxonomy. Pollen Spores. 10(2):263–314.
  • Engel MS, Grimaldi DA, Nascimbene PC, Singh H. 2011. The termites of Early Eocene Cambay amber, with the earliest record of the Termitidae (Isoptera). ZooKeys. 148:105–123. doi:10.3897/zookeys.148.1797.
  • Goeppert HR, Berendt GC. 1845. Der Bernstein und die in ihm befindlichen Pflanzenreste der Vorwelt. In: Berendt GC, editor. Die im Bernstein befindichen organischen Reste der Vorwelt, Band 1, 1. Berlin (Germany): Abth., Nicolai; p. 1–125.
  • Grimaldi D, Singh H. 2012. The extinct Genus Pareuthychaeta in Eocene Ambers (Diptera: schizophora:Ephydroidea). Canadian Entomologist. 144:17–28. doi:10.4039/tce.2012.5.
  • Heinrichs J, Scheben A, Bechteler J, Lee GE, Verwimp AS, Hedenas L, Singh H, Pocs T, Nascimbene PC, Peralta F, et al. 2016. Crown group lejeuneaceae and pleurocarpous mosses in early Eocene (Ypresian) Indian amber. Plos One. 10(1371):1–15.
  • Hoeken-Klinkenberg V. 1966. Maastrichtian Palaeocene and Eocene pollen and spores from Nigeria.-Leidse. Geol Mededel. 38:37–48.
  • Jr GO P, Brown AE. 2002. Hymenaea mexicana sp. nov. (Leguminosae: caesalpioideae) from Mexican amber indicates Old World connections. Botan J Linn Soc. 39:125–132.
  • Jr GO P, Lambert JB, Wu Y. 2007. Araucarian source of fossiliferous Burmese amber: spectroscopic and anatomical evidence. J Bot Res Inst Texas. 1:449–455.
  • Kania I, Krzeminski W, Stebner F, Singh H. 2017. The first representative of Tipulomorpha (Diptera) from Early Eocene Cambay amber (India). Earth Environ Sci Trans Royal Soc Edinburgh. 107:263–269. doi:10.1017/S1755691017000433.
  • Kar RK. 1978. Palynostratigraphy of the Naredi (Lower Eocene) and Harudi (Middle Eocene) formation in the district of Kutch, India. Palaeobotanist. 25:161–178.
  • Kar RK. 1985. The fossil floras of Kutch. IV-Tertiary palynostratigraphy. The Palaeobotanist. 34:1–280.
  • Kar RK. 1990a. Palynology of Miocene and Mio-Pliocene sediments of north-east India. J Palynol. 26:171–217.
  • Kar RK. 1992. Occurrence of Dipterocarpus type of pollen from the Miocene sediments of Kerala, South India. Jour Palynol. 28:79–85.
  • Kar RK. 1995. Diporocolpis: A new type of aperture from the Early-Eocene sediments of Rajasthan, India. Palaeobot. 42(3):380–386.
  • Kar RK, Saxena RK. 1976. Algal and fungal microfossils from Matanomadh Formation (Palaeocene (Kutch, India. Palaeobotanist. 23:1–15.
  • Kar RK, Saxena RK. 1981. Palynological investigation of a bore core near Rataria, southern Kutch, Gujarat. Geophytol. 11(2):103–124.
  • Khanolkar S, Sharma J. 2019. Record of Early to Middle Eocene palaeoenvironmental changes from lignite mines, western India. Jour Micropalaeontol. 38:1–24. doi:10.5194/jm-38-1-2019.
  • Kohlman-Adamska A. 2001. Agraphic reconstruction of an ‘amber’ forest. In: Kosmowska-Ceranowicz B, editor. The Amber Treasure Trove. The Tadeusz Giecewicz;s Collection at the Museum of the Earth. Warsaw: Polish Academy of Sciences, Museum of the Earth Documentary studies 18, Oficyna Wydawnicza Sadyba; p. 15–18.
  • Kumar M, Monga P, Shukla A, Mehrotra RC. 2017. Botrycoccus from the early Eocene lignite mines of western India: inferences on morphology, taphonomy and palaeoenvironment. Palynology. 41(4):462–471. doi:10.1080/01916122.2016.1259667.
  • Kumar M, Spicer RA, Spicer TEV, Shukla A, Mehrotra RC, Monga P. 2016. Palynostratigraphy and palynofacies of the early Eocene Gurha lignite mine, Rajasthan, India. Palaeogeo, Palaeoclimat, Palaeoeco. 461:98–108. doi:10.1016/j.palaeo.2016.08.013.
  • Kunzmann L, Schneider W. 2013. Stop 3.2:, 'Tertiärwald' am Waldsee Lauer. Pages 124-136, in J. Rascher, C. Heinrich, U. Holz, L. Kunzmann, W. Schneider, G. Standke, R. Wimmer. Exkursionsführer Bitterfelder Bernstein (Stop 1) und Geologie, Bergbaugeschichte sowie Entwicklung der Bergbaufolgelandschaft im Raum Profen/Cospuden (Stop 2 und Stop 3). Exkursionsführer und Veröffentlichungen der Deutschen Gesellschaft für Geowissenschaften 249:112–136
  • Langenheim JH. 2003. Plant resins- chemistry, evolution, ecology and ethnobotany. Portland: Timber Press; p. 1–586.
  • Mallick M, Dutta S, Greenwood PF, Bertram N. 2009. Pyrolytic and Spectroscopic Studies of Eocene Resin from Vastan Lignite Mine, Cambay Basin, Western India. Jour Geol Soc India. 74:16–22. doi:10.1007/s12594-009-0098-5.
  • Mandal J. 1999. Fossil Rivulariaceae from the Early Eocene of Kutch, India. Jour Palaeontol Soc India. 44:135–139.
  • Mandal J, Chandra A, Kar RK. 1994. Palynofossils from the Kadamtala coal, Middle Andaman, India. Geophytology. 23(2):209–214.
  • Mandal J, Rao MR. 2001. Taxonomic revision of tricolpate pollen from Indian Tertiary. Palaeobot. 50(2–3):341–368.
  • Mathews RP, Singh BD, Singh H, Singh VP, Singh A. 2018. Characterization of Panandhrolignite deposits (Kachchh Basin), western India: results from the Bulk Geochemical and palynofloral Composition. Jour Geol Soc India. 91:281–289. doi:10.1007/s12594-018-0851-8.
  • Mathews RP, Tripathi SKM, Dutta BS. 2013. Palynology, palaeoecology and palaeodepositional environment of Eocene lignites and associated sediments from Matanomadh mines, Kutch Basin, Western India. Jour Geol Soc India. 82:236–248. doi:10.1007/s12594-013-0146-z.
  • Mazur N, Nagel M, Leppin U, Bierbaum G, Rust J. 2014. The extraction of fossil arthropods from Lower Eocene Cambay amber. Acta Palaeontol Pol. 59(2):455–459.
  • McCann T. 2010. Chenier plain sedimentation in the Palaeogene-age lignite rich successions of the Surat area Gujarat western India. Z deutschGesGeowiss. 161:335–351.
  • Nel A, Brasero N. 2010. Oise amber. In: D. Peney, editor. Biodiversity of fossils in amber from the major world deposits. Manchester: Sri Scientific Press; p. 137–148.
  • Nohra Y, Perrichot V, Jeanneau I, Le Polles AD. 2015. Chemical characterization and botanical origin of French ambers. J Nat Prod. 78:1284–1293. doi:10.1021/acs.jnatprod.5b00093.
  • Ortega-Blanco J, Chatzimanolis S, Singh H, Engel MS. 2013. The oldest fossil of the Subfamily Osoriinae (Coleoptera: staphylinidae), from Eocene Cambay amber (India). The Coleopterists Bulletin. 67(3):304–308. doi:10.1649/0010-065X-67.3.304.
  • Paul S, Dutta S. 2016. Terpenoid composition of fossil resins from western India: new insights into the occurrence of resin-producing trees in Early Palaeogene equatorial rainforest of Asia. Internat Jour Coal Geol. 167:65–74. doi:10.1016/j.coal.2016.09.008.
  • Penney D. 2010. Dominican amber. In: Peneey D, editor. Biodiversity of fossils in amber from the major world deposits. Manchester: Siri Scientific Press; p. 22–41.
  • Perkovsky FE, Zosimovich VZ, Vlaskin AP. 2010. Rovno Amber. In: Penney D, editor. Biodiversity of Fossils in amber from the Major World Deposits. Manchester: Siri Scientific Press; p. 116–136.
  • Poinar JGO. 1991. Hymenaea protera sp. n. (Leguminosae, Caesalpinioideae) from Dominican amber has African affinities. Experientia. 47:1075–1082. doi:10.1007/BF01923347.
  • Poinar JGO. 2018. Burmese amber: evidence of Gondwanan origin and Cretaceous dispersion. Histo Biol. 31(10):1304–1309.
  • Prasad V, Farooqui A, Tripathi SKM, Garg R, Thakur B. 2009. Evidence of Late Palaeocene-Early Eocene equatorial rain forest refugia in southern Western Ghats, India. Journal of Biosciences. 34(5):777–797. doi:10.1007/s12038-009-0062-y.
  • Rao MR, Sahni A, Rana RS, Verma P. 2013. Palynostratigraphy and depositional environment of Vastan Lignite Mine (Early Eocene), Gujarat, western India. Jour Earth System Sci. 122(2):289–307. doi:10.1007/s12040-013-0280-4.
  • Rust J, Singh H, Rana RS, McCann T, Singh L, Anderson K, Sarkar N, Nascimbene PC, Stebner F, Thomas JC, et al. 2010. Biogeographic and evolutionary implications of a diverse palaeobiota in amber from the early Eocene of India. Proc Natl Acad Sci (USA). 107(43):1–6. doi:10.1073/pnas.1007407107.
  • Sadowski EM, Schmidt AR, Kunzmann L, Grohn C, Seyfullah LJ. 2016. Sciadopitys cladodes from Eocene Baltic amber. Botanic Jour Linn Soc. 180:258–268. doi:10.1111/boj.12365.
  • Sadowski EM, Schmidt AR, Seyfullah LJ, Kunzmann L. 2017. Conifer of the ‘Baltic amber forest’ and their palaeoecological significance. Stapfia. 106:1–73.
  • Sadowski EM, Seyfullah LJ, Sadowski F, Fleischmann A, Behling H, AR S. 2015. Carnivorous leaves from Baltic amber. Proc Natl Acad Sci U S A. 112:190–195. doi:10.1073/pnas.1414777111.
  • Sah SCD, Kar RK. 1970. Palynology of the Laki sediments in Kutch: 3. Pollen from the bore-holes around Jhulrai, Baranda and Panandhro. Palaeobot. 18(2):127–142.
  • Sahni A, Saraswati PK, Rana RS, Kumar K, Singh H, Alimohmmadian H, Sahni N, Rose KD, Singh L, Smith T. 2006. Temporal constraints and depositional environments of the Vastan Lignite sequence, Gujarat: analogy for the Cambay Shale Hydrocarbon source rock. Ind Jour Petrol Geol. 15(1):1–20.
  • Samant B. 1994. Age of the Bhavnagar lignite deposit of Gujarat. Jour Palynol. 30(1–2):49.
  • Samant B, Phadtare NR. 1997. Stratigraphic palynoflora of the Early Eocene Rajpardi lignite, Gujarat and the lower age limit of the Tarkeshwar Formation of South Cambay Basin, India. Palaeontograph Abt. B245(1–6):1–108.
  • Samant B, Singh H 2013. First record of diverse palynoassemblage from the amber pieces of Tarkeshwar, Vastan and Mangrol lignite deposits of Cambay Basin, Gujarat, India. XXIV Indian Colloquium on Micropalaeontology and Stratigraphy. p.121.
  • Saxena RK. 1978. Palynology of the Matanomadh Formation in type area, north-western Kutch, India (Part 1). Systematic description of pteridophytic spores. Palaeobotanist. 25:448–456.
  • Seyfullah L, Beimforde C, Corso JD, Perrichot V, Rikkinen J, Schmidt AR. 2018. Production and preservation of resins-past and present. Biol Rev. 93:1684–1714. doi:10.1111/brv.12414.
  • Sharma J, Saraswati PK. 2015. Lignites of Kutch, Western India: dinoflagellate biostratigraphy and palaeoclimate. Revue De Micropalaeontol. 58:107–119. doi:10.1016/j.revmic.2015.03.003.
  • Sheffy MV, Dilcher DL. 1971. Morphology and taxonomology of fungal spores. Palaeontograph Abt B. 133:34–51.
  • Shukla A, Mehrotra RC, Spicer RA, Spicer TEV, Kumar M. 2014. Cool equatorial terrestrial temperatures and the South Asian monsoon in the Early Eocene: evidence from the Gurha Mine, Rajasthan, India. Palaeogeo Palaeoclimat Palaeoecol. 412:187–198. doi:10.1016/j.palaeo.2014.08.004.
  • Singh H. 2015. Palynofloral investigation of the Akli Formation (Palaeocene) of Giral Lignite mine, Barmer district, Rajasthan. Geophytol. 45:209–214.
  • Singh H, Prasad M, Kumar K, Rana RS, Singh SK. 2010. Fossil fruits from Early Eocene Vastan Lignite, Gujarat, India: taphonomic and phytogeographic implications. Curr Sci. 98:1625–1632.
  • Singh H, Prasad M, Kumar K, Rana RS, Singh SK. 2015. Early Eocene macroflora and associated palynofossils from the Cambay Shale Formation, western India: phytogeographic and palaeoclimatic implications. Palaeoworld. 24:293–324. doi:10.1016/j.palwor.2015.05.002.
  • Singh H, Samant B, Addatte T, Khozyem H. 2014. Diverse palynoflora from amber and associated sediments of Tarkeshwar lignite mine. Surat District, Gujarat, India Curr Sci. 106(7):930–932.
  • Singh RY, Dogra NN. 1988. Palynological zonation of Palaeocene of India with special reference to western Rajasthan. In: Maheshwari HK, editor. Palaeocene of India. Proceedings of the Symposium on Palaeocene of India: limits and subdivisions, 1986. Lucknow: Indian Association of Palynostratigraphers; p. 51–64.
  • Smith T, Kumar K, Rana RS, Folie A, Sole F, Noiret C, Steeman T, Sahni A, Rose KD. 2016. New early Eocene vertebrate assemblage from western India reveals a mixed fauna of European and Gondwana affinities. Geosci Front. 7:969–1001. doi:10.1016/j.gsf.2016.05.001.
  • Spahr U. 1993. Systematic catalogue and bibliography of flora in amber and copal. Stuttgarter Beitrage zur Naturkunde. Serie B (Geologie und Palaontologie). 195: 1–99. In German, English abstract.
  • Spicer R, Yang J, Herman A, Kodrul T, Aleksandrova G, Masolva N, Spicer T, Ding L, Xu Q, Shukla A, et al. 2017. Palaeogene monsoons across India and South China: drivers of biotic change. Gondwana Res. 49:350–363. doi:10.1016/j.gr.2017.06.006.
  • Srivastava VK, Singh VP, Kanhaiya S. 2017. Facies characteristics and depositional environments of the middle Eocene (Lutetian) Harudi Formation, Kachchh, Western India. Carbonates Evapoites. doi:10.1007/s13146-017-0398-6
  • Stebner F, Szadziewski R, Rühr PT, Singh H, Hammel J, Kvifte GM, Rust J 2016. A fossil biting midge (Diptera: ceratopogonidae) from early Eocene amber with a complex pheromone evaporator. Scientific Reports. DOI: 10.1038/SREP34352 1–6.
  • Stebner F, Szadziewski R, Singh H, Gunekel S, Rust J. 2017. Biting midge (Diptera: ceratopogonidae) from Cambay amber indicate that the Eocene fauna of the Indian Subcontinent was not isolated. Plos One. 12(1):1–24. doi:10.1371/journal.pone.0169144.
  • Tripathi SKM. 1995. Palynology of subsurface Palaeogene sediments near KapurdiBarmer District, Rajasthan, India. Palaeobot. 43(1):45–53.
  • Tripathi SKM. 1997. Palynological changes across subsurface Palaeocene-Eocene sediments near Barmer, Rajasthan, India. Palaeobot. 46:168–171.
  • Tripathi SKM, Mathur SC, Nama SL, Srivastava D. 2007. Palynological studies from Early Eocene sequence exposed near Matasukh, Nagaur District, western Rajasthan, India. In: Trivedi PC, editor. Palaeobotany to modern botany. Jaipur (India): Pointer Publishers; p. 49–56.
  • Tripathi SKM, Saxena RK, Prasad V. 2000. Palynological investigation of the Tura Formation (Early Eocene) exposed along Tura-Dalu Road, West Garo Hills, Meghalaya, India. Palaeobot. 49(2):239–251.
  • Tripathi SKM, Singh HP. 1985. Palynology of the Jaintia group (Palaeocene-Eocene) exposed along Jowai-Sonapur road, Meghalaya, India- Part I. Systematic palynology. Geophytol. 15(2):164–187.
  • Tripathi SKM, Srivastava D. 2012. Palynology and palynofacies of the early Palaeogene lignite bearing succession of Vastan, Cambay Basin, Western India. Acta Palaeobotanica. 52(1):157–175.
  • Venkatachala BS, Kar RK. 1969. Palynology of the Tertiary sediments of Kutch-1. Spores and pollen from bore hole no. 14. Palaeobot. 17(2):157–178.
  • Venkatachala BS, Rawat MS. 1973. Palynology of the Tertiary sediments in the Cauvery Basin-2. Oligocene-Miocene palynoflora from the subsurface. Palaeobotanist. 20(2):238–263.
  • Wang B, Rust J, Engel MS, Szwedo J, Dutta S, Nel A, Fan Y, Meng F, Shi G, Jarzembowski EA, et al. 2014. Diverse palaeobiota in early Eocene Fushun amber from China. Curr Bio. 24:1606–1610. doi:10.1016/j.cub.2014.05.048.
  • Willis JC, Airy Shaw HK. 1973. A dictionary of the flowering plants and ferns (8th E.). Cambridge (UK): Cambridge University Press; p. 1243.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.