Publication Cover
Historical Biology
An International Journal of Paleobiology
Volume 33, 2021 - Issue 12
119
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Sclerobionts on soft-bottom, free-living Stylomaeandra Fromentel corals from the Lower Cretaceous Agrio Formation, Neuquén Basin, Argentina: palaeobiological implications for umbrella-shaped colonies

ORCID Icon, , & ORCID Icon
Pages 3542-3560 | Received 19 Nov 2020, Accepted 14 Jan 2021, Published online: 25 Mar 2021

References

  • Aguirre-Urreta MB, Casadío S, Cichowolski M, Lazo DG, Rodríguez DL. 2008. Afinidades paleobiogeográficas de los invertebrados cretácicos de la Cuenca Neuquina. Ameghiniana. 45:593–613.
  • Aguirre-Urreta MB, Lazo DG, Griffin M, Vennari V, Parras AM, Cataldo C, Garberoglio R, Luci L. 2011. Megainvertebrados del Cretácico y su importancia bioestratigráfica. In: Leanza HA, Arregui C, Carbone O, Danieli JC, Vallés JM, editors. Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del XVIII Congreso Geológico Argentino. Buenos Aires: Asociación Geológica Argentina; p. 465–488.
  • Aguirre-Urreta MB, Rawson PF. 2012. Lower Cretaceous ammonites from the Neuquén Basin, Argentina: a new heteromorph fauna from the uppermost Agrio Formation. Cret Res. 35:208–216. doi:https://doi.org/10.1016/j.cretres.2012.01.001.
  • Akopyan VT 1962. Stratigraphy of the Jurassic and Cretaceous deposits of the south-east Zangezur. Academy of Science of the Armenian SSR. 288 pp.
  • Alvarez F, Taylor PD. 1987. Epizoan ecology and interactions in the Devonian of Spain. Palaeogeogr Palaeoclimatol Palaeoecol. 61:17–31. doi:https://doi.org/10.1016/0031-0182(87)90039-3.
  • Ayoub-Hannaa W, Fürsich FT. 2012. Palaeoecology and environmental significance of benthic associations from the Cenomanian-Turonian of eastern Sinai, Egypt. Beringeria. 42:93–138.
  • Baker PG, Manceñido MO. 1997. The morphology and shell microstructure of the thecideidine brachiopod Ancorellina ageri from the Lower Jurassic of Argentina. Palaeontol. 40(1):191–200.
  • Barclay KM, Schneider CL, Leighton LR. 2015. Mapping sclerobiosis: a new method for interpreting the distribution, biological implications, and paleoenvironmental significance of sclerobionts on biotic hosts. Paleobiology. 41:592–609.
  • Bertling M. 1993. Ecology and distribution of the Late Jurassic Scleractinian Thamnasteria concinna (Goldfuss) in Europe. Palaeogeogr Palaeoclimatol Palaeoecol. 105(3–4):311–335. doi:https://doi.org/10.1016/0031-0182(93)90088-Z.
  • Boardman RS, Cheetham AH. 1987. Phylum Bryozoa. In: Boardman RS, Cheetham AH, Rowell AJ, editors. Fossil Invertebrates. London: Blackwell Scientific Publications; p. 140–193.
  • Brett CE, Baird GC. 1986. Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. Palaios. 1(3):207–227. doi:https://doi.org/10.2307/3514686.
  • Brett CE, Parsons-Hubbard KM, Walker SE, Ferguson C, Powell EN, Staff G, Ashton-Alcox KA, Raymond A. 2011. Gradients and patterns of sclerobionts on experimentally deployed bivalve shells: synopsis of bathymetric and temporal trends on a decadal time scale. Palaeogeogr Palaeoclimatol Palaeoecol. 312(3–4):278–304. doi:https://doi.org/10.1016/j.palaeo.2011.05.019.
  • Brett CE, Smrecak T, Parsons-Hubbard K, Walker SE. 2012. Marine Sclerobiofacies: encrusting and endolithic communities on shells through time and space. In: Talent JA, editor. Earth and life, global biodiversity, extinction intervals and biogeographic perturbations through time. Berlín-Heidelberg: Springer Verlag; p. 129–157.
  • Cataldo CS. 2013. A new early Cretaceous nerineoid gastropod from Argentina and its palaeobiogeographic and palaeoecological implications. Cret Res. 40:51–60. doi:https://doi.org/10.1016/j.cretres.2012.05.007.
  • Cataldo CS. 2017. New records of marine gastropods from the Lower Cretaceous of west-central Argentina. Ameghiniana. 54(4):405–440. doi:https://doi.org/10.5710/AMGH.14.12.2016.3053.
  • Chadwick NE. 1988. Competition and locomotion in a free-living fungiid coral. J Exp Mar Biol Ecol. 123(3):189–200. doi:https://doi.org/10.1016/0022-0981(88)90041-X.
  • Chadwick-Furman N, Loya Y. 1992. Migration, habitat use, and competition among mobile corals (Scleractinia: fungiidae) in the Gulf of Eilat, Red Sea. Mar Biol. 114(4):617–623. doi:https://doi.org/10.1007/BF00357258.
  • Chapman ND, Moore CG, Harries DB, Lyndon BR. 2007. Recruitment patterns of Serpula vermicularis L. (Polychaeta, Serpulidae) in Loch Creran, Scotland. Estuarine, Coast Shelf Sci. 73(3–4):598–606. doi:https://doi.org/10.1016/j.ecss.2007.03.001.
  • Checa AG, Okamoto T, Keupp H. 2002. Abnormalities as natural experiments: a morphogenetic model for coiling regulation in planispiral ammonites. Paleobiol. 28(1):127–138. doi:https://doi.org/10.1666/0094-8373(2002)028<0127:AANEAM>2.0.CO;2.
  • Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao CX, Chazdon RL, Longino JT. 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol. 5(1):3–21. doi:https://doi.org/10.1093/jpe/rtr044.
  • Cooper MR. 1997. Exogyrid oysters (Bivalvia: gryphaeoidea) from the Cretaceous of Southeast Africa, Part 2. Durb Mus Novit. 22:1–31.
  • Core Team R. 2016. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/
  • Finks RM, Reid REH, Rigby JK. 2004. Porifera (Demospongea, Hexactinellida, Heteractinida, Calcarea). Treat Inverteb Paleontol Part E, Revised E(3):1–872.
  • Fürsich FT, Pandey KD, Oschmann W, Jaitly AK, Bir Singh I. 1994. Ecology and adaptive strategies of corals in unfavourable environments: examples from the Middle Jurassic of the Kachchh Basin, Western India. Neues Jahrb Geol Paläontol Abh. 194:269–303.
  • Gameil M. 2005. Palaeoecological implications of Upper Cretaceous Solitary Corals, United Arab Emirates/Oman Borders. Rev Paléobiologie. 24(2):515–532.
  • Garberoglio RM. 2019. Estudio de los corales escleractínidos del Cretácico Temprano de la Cuenca Neuquina, centro-oeste de Argentina [dissertation]. Buenos Aires: Universidad de Buenos Aires.
  • Garberoglio RM, Lazo DG. 2011. Post-mortem and symbiotic sabellid and serpulid-coral associations from the Lower Cretaceous of Argentina. Rev Brasileira Paleontolog. 14(3):215–228. doi:https://doi.org/10.4072/rbp.2011.3.02.
  • Garberoglio RM, Lazo DG 2014. Coral biostromes from the Hauterivian of the Southeastern Pacific, Neuquén Basin, west-central Argentina. Abstract Volume 4th International Palaeontological Congress; Sept 28-Oct 3; Mendoza, Argentina.
  • Garberoglio RM, Lazo DG, Luci L Forthcoming 2020. Mutualismo entre serpúlidos y corales, del Valanginiano a la actualidad, una estrecha relación de 130 millones de años. Abstract Volume, Reunión de Comunicaciones de la Asociación Paleontológica Argentina 2019. Publ. Electron. APA.
  • Garberoglio RM, Lazo DG, Palma RM. 2013. An integrate analysis of an Hauterivian coral biostrome from the Agrio Formation, Neuquén Basin, west-central Argentina. Cret Res. 43:97–115. doi:https://doi.org/10.1016/j.cretres.2013.02.010.
  • Gasparini Z, Fernández M, de la Fuente M, Salgado L. 2007. Reptiles marinos jurásicos y cretácicos de la Patagonia argentina: su aporte al conocimiento de la herpetofauna mesozoica. Asoc Paleontol Argent Publ Espec. 11:125–136.
  • Gibson MA. 1992. Some epibiont-host and epibiont-epibiont relationships from the Birdsong Shale Member of the Lower Devonian Ross Formation (west-central Tennessee, USA). Historical Biol. 6(2):113–132. doi:https://doi.org/10.1080/10292389209380422.
  • Gill GA, Coates AG. 1977. Mobility, growth patterns and substrate in some fossil and Recent corals. Lethaia. 10(2):119–134. doi:https://doi.org/10.1111/j.1502-3931.1977.tb00601.x.
  • Groeber P. 1946. Observaciones geológicas a lo largo del meridiano 70º1. Hoja Chos Malal Rev Soc Geol Argent. 1:177–208.
  • Harries PJ, Sorauf JE. 2010. Epi-and endobionts on and in free-living colonies of Manicina areolata (Cnidaria, Scleratinia): a comparison of two Pleistocene communities from southern Florida. Palaios. 25(6):400–414. doi:https://doi.org/10.2110/palo.2009.p09-137r.
  • Hoeksema BW. 1993. Phenotypic corallum variability in recent mobile reef corals. Cour. Vol. 164, Forschungsinstitut Senckenberg. p. 263–272. https://www.senckenberg.de/en/science/senckenberg-publications/back-volumes/courier-forschungsinstitut-senckenberg/
  • Hoeksema BW, Bongaerts P. 2016. Mobility and self-righting by a free-living mushroom coral through pulsed inflation. Mar Biodivers. 46(2):521–524. doi:https://doi.org/10.1007/s12526-015-0384-y.
  • Hoqui M, Bressan GS, Palma RM. 2019. Revision of the coral fauna of an Upper Jurassic patch reef from La Manga Formation, Neuquén Basin, Argentina. Ameghiniana. 56(1):53–71. doi:https://doi.org/10.5710/AMGH.20.03.2019.3236.
  • Hove Ten HA, van den Hurk P. 1993. A review of recent and fossil serpulid “reefs”, actuopalaeontology and the “Upper Malm” serpulid limestone in NW Germany. Geol Mijnb. 72:23–67.
  • Howell JA, Schwarz E, Spalletti LA, Veiga GD. 2005. The Neuquén Basin: an overview. In: Veiga G, Spalletti LA, Howell J, Schwarz E, editors. The Neuquén Basin: a case study in sequence Stratigraphy and Basin dynamics, special publication 252. London: Geological Society of London; p. 203–216.
  • Kühlmann DHH. 1983. Composition and ecology of deep-water coral associations. Helgol Meeresunters. 36(2):183–204. doi:https://doi.org/10.1007/BF01983856.
  • Latypov YY. 2007. Free-living scleractinian corals on reefs of the Seychelles Islands. Rus J Mar Biol. 33(4):222–226. doi:https://doi.org/10.1134/S1063074007040037.
  • Lazo DG 2005. Análisis preliminar de las facies de corales del techo de la Formación Agrio, Cretácico Inferior de Cuenca Neuquina. Actas (3) XVI Congreso Geológico Argentino; Sep 20–23; La Plata, Argentina: Asociación Geológica Argentina: p. 337–342.
  • Lazo DG. 2007. Early Cretaceous bivalves of the Neuquén Basin, west-central Argentina: notes on taxonomy, palaeobiogeography and palaeoecology. Geol J. 42(2):127–142. doi:https://doi.org/10.1002/gj.1080.
  • Lazo DG, Cichowolski M, Rodríguez DL, Aguirre-Urreta MB. 2005. Lithofacies, palaeocology and palaeoenvironments of the Agrio Formation, Lower Cretaceous of the Neuquén Basin, Argentina. In: Veiga G, Spalletti LA, Howell J, Schwarz E, editors. The Neuquén Basin: a case study in sequence Stratigraphy and Basin Dynamics, Special Publication 252. London: Geological Society of London; p. 295–315.
  • Lebold JG. 2000. Quantitative analysis of epizoans on Silurian stromatoporoids within the Brassfield Formation. J Paleontol. 74(3):394–403. doi:https://doi.org/10.1017/S002233600003167X.
  • Legarreta L, Uliana MA. 1991. Jurassic - Cretaceous marine oscillations and geometry of back - arc basin fill, central Argentine Andes. Special Publ Int Assoc Sedimentol. 12:429–450.
  • Lescinsky HL. 1995. The life orientation of concavo-convex brachiopods: overturning the paradigm. Paleobiology. 21(4):520–551. doi:https://doi.org/10.1017/S009483730001352X.
  • Lescinsky HL, Edinger E, Risk MJ. 2002. Mollusc shell encrustation and Bioerosion rates in a modern Epeiric Sea: taphonomy experiments in the Java Sea, Indonesia. Palaios. 17(2):171–191. doi:https://doi.org/10.1669/0883-1351(2002)017<0171:MSEABR>2.0.CO;2.
  • Levy Z. 1976. Morphology of the shell in Gryphaeidae. Isr J Earth-Sci. 25:45–50.
  • Liddell WD, Brett CE. 1982. Skeletal overgrowths among epizoans from the Silurian (Wenlockian) Waldron Shale. Paleobiology. 8(1):67–78. doi:https://doi.org/10.1017/S009483730000436X.
  • Löser H. 2016. Catalogue of Cretaceous Corals 4. Systematic Part. Dresden: CPress Verlag.
  • Luci L, Cichowolski M. 2014. Encrustation in nautilids: a case study in the Cretaceous species Cymatoceras perstriatum, Neuquén Basin, Argentina. Palaios. 29(3):101–120. doi:https://doi.org/10.2110/palo.2013.062.
  • Luci L, Cichowolski M, Aguirre-Urreta MB. 2016. Sclerobionts, shell morphology and biostratinomy on ammonites: two Early Cretaceous cases from the Neuquén Basin, Argentina. Palaios. 31(2):41–54. doi:https://doi.org/10.2110/palo.2015.052.
  • Luci L, Garberoglio RM, Lazo DG. 2013. Serpulids and other calcareous tube-dwelling encrusting polychaetes from the Early Cretaceous Agrio Formation (Neuquén Basin, Argentina). Geobios. 46(3):213–224. doi:https://doi.org/10.1016/j.geobios.2012.06.003.
  • Luci L, Lazo DG. 2015. Living on an island: characterization of the encrusting fauna of large pectinid bivalves from the Lower Cretaceous of the Neuquén Basin, west-central Argentina. Lethaia. 48(2):205–226. doi:https://doi.org/10.1111/let.12100.
  • Luci L, Toscano AG, Lazo DG. 2019. Palaeoecological analysis of a sclerobiont fauna on a single basibiont across the Valanginian of the Neuquén Basin, west-central Argentina. Lethaia. 52(4):523–549. doi:https://doi.org/10.1111/let.12329.
  • Malchus N. 1990. Revision der Kreide-Austern (Bivalvia: pteriomorphia) Ägyptens (Biostratigraphie, Systematik). Berl Geowiss Abh Reihe A, Bd. 125(P):231.
  • Malella J. 2007. Coral reef encruster communities and carbonate production in cryptic and exposed coral reef habitats along a gradient of terrestrial disturbance. Coral Reefs. 26(4):775–785. doi:https://doi.org/10.1007/s00338-007-0260-8.
  • Mallela J, Ferse SCA. 2013. Calcification by reef-building sclerobionts. PLOS One. 8(3):e60010. doi:https://doi.org/10.1371/journal.pone.0060010.
  • Manceñido MO, Damborenea SE. 1990. Corallophilous micromorphic brachiopods from the Lower Jurassic of west central Argentina. In: MacKinnon DI, Lee DE, Campbell JD, editors. Brachiopods through time. Rotterdam: Balkema; p. 89–96.
  • Martindale W. 1992. Calcified epibionts as palaeoecological tools: examples from the Recent and Pleistocene reefs of Barbados. Coral Reefs. 11(3):167–177. doi:https://doi.org/10.1007/BF00255472.
  • Meesters EH, Mueller B, Nugues MM. 2012. Caribbean free-living coral species co-occurring deep off the windward coast of Curaçao. Coral Reefs. 32(1):109. doi:https://doi.org/10.1007/s00338-012-0960-6.
  • Milla Carmona PS, Lazo DG, Soto IM. 2018. Morphological evolution of the bivalve Ptychomya through the Lower Cretaceous of Argentina. Paleobiology. 44(1):1–17. doi:https://doi.org/10.1017/pab.2017.32.
  • Mõtus MA, Vinn O. 2009. The worm endosymbionts in tabulate corals from the Silurian of Podolia, Ukraine. Estonian J Earth Sci. 58(3):185–192. doi:https://doi.org/10.3176/earth.2009.3.03.
  • Nebelsick JH, Bassi D, Rasser MW. 2011. Cryptic relicts from the past: palaeoecology and taphonomy of encrusting thecideid brachiopods in Paleogene carbonates. Annalen Naturhistorischen Mus Wien. 113:525–542.
  • Pajaud D. 1974. Ecologie des Thécidées. Lethaia. 7(3):203–218. doi:https://doi.org/10.1111/j.1502-3931.1974.tb00897.x.
  • Pitt LJ, Taylor PD. 1990. Cretaceous Bryozoa from the Faringdon Sponge Gravel (Aptian) of Oxfordshire. Bull Br Mus (Nat Hist) Geol Ser. 46:61–152.
  • Plusquellec Y, Webb GE, Hoeksema BW. 1999. Automobility in Tabulata, Rugosa, and extant scleractinian analogues: stratigraphic and paleogeographic distribution of Paleozoic mobile corals. J Paleontol. 76(3):985–1001. doi:https://doi.org/10.1017/S0022336000030936.
  • Ramos VA, Kay SM. 2006. Overview of the tectonic evolution of the southern Central Andes of Mendoza and Neuquén (35º - 39ºS latitude). Evolution of an Andean Margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35º - 39ºS latitude). Geol Soc Am Special Pap. 407:1–17.
  • Rasser MW, Riegl B. 2002. Holocene coral rubble and its binding agents. Coral Reefs. 21(1):57–72. doi:https://doi.org/10.1007/s00338-001-0206-5.
  • Rodland DL, Simôes MG, Krause RA Jr, Kowalewski M. 2014. Stowing away on ships that pass in the night: sclerobiont assemblages on individually dated bivalve and brachiopod shells from a subtropical shelf. Palaios. 29(4):170–183. doi:https://doi.org/10.2110/palo.2013.033.
  • Rosen BR, Aillud GS, Bosellini FR, Clack NJ, Insalaco E, Valldeperas FX, Wilson MEJ 2000. Platy coral assemblages: 200 million years of functional stability in response to the limiting effects of light and turbidity. Proceedings 9th International Coral Reef Symposium; Oct 23–27; Bali, Indonesia (editorial unknown).
  • Rowley S. 2008. A critical evaluation of the symbiotic association between tropical tube-dwelling Polychaetes and their Hermatypic coral hosts, with a focus on Spirobranchus giganteus (Pallas, 1766). Plymouth Stud Sci. 1:335–353.
  • Sanders D, Baron-Szabo RC. 2008. Palaeoecology of solitary corals in soft-substrate habitats: the example of Cunnolites (upper Santonian, Eastern Alps). Lethaia. 41(1):1–14. doi:https://doi.org/10.1111/j.1502-3931.2007.00039.x.
  • Sanfilippo R, Rosso A, Basso D, Violanti D, Di Geronimo I, Di Geronimo R, Benzoni F, Robba E. 2011. Cobbles colonization pattern from a tsunami-affected coastal area (SW Thailand, Andaman Sea). Facies. 57(1):1–13. doi:https://doi.org/10.1007/s10347-010-0226-0.
  • Schneider CL. 2013. Epibionts across the Late Devonian biotic crisis: a review. Proc Geol Assoc. 124(6):893–909. doi:https://doi.org/10.1016/j.pgeola.2013.05.002.
  • Schwarz E, Spalletti LA, Howell JA. 2006. Sedimentary response to a tectonically induced sea-level fall in a shallow back-arc basin: the Mulichinco Formation (Lower Cretaceous), Neuquén Basin, Argentina. Sedimentology. 53(1):55–81. doi:https://doi.org/10.1111/j.1365-3091.2005.00753.x.
  • Seidel R, Hoffmann J, Kaulfuss A, Lüter C. 2012. Comparative histology of larval brooding in Thecideoidea (Brachiopoda). Zool Anz. 251(4):288–296. doi:https://doi.org/10.1016/j.jcz.2011.12.007.
  • Smrecak TA, Brandt D. 2017. Comparison of techniques describing sclerobiont abundance and distribution on shelly substrates. Palaios. 32(8):543–555. doi:https://doi.org/10.2110/palo.2016.075.
  • Smrecak TA, Brett CE. 2014. Establishing patterns in sclerobiont distribution in a Late Ordovician (Cincinnatian) depth gradient: toward a sclerobiofacies model. Palaios. 29(2):75–85. doi:https://doi.org/10.2110/palo.2012.128.
  • Sorauf JE. 2010. Colonial form, free-living corals, and macroborers from the Pleistocene of South Florida. Palaeoworld. 19(3–4):426–434. doi:https://doi.org/10.1016/j.palwor.2010.09.007.
  • Sorauf JE, Harries PJ. 2010. Morphologic variation in Manicina areolata (Cnidaria, Scleractinia) from the Pleistocene of South Florida. J Paleontol. 84(3):505–517. doi:https://doi.org/10.1666/09-073.1.
  • Spalletti LA, Veiga GD, Schwarz E. 2011. La Formación Agrio (Cretácico Temprano) en la Cuenca Neuquina. In: Leanza HA, Arregui C, Carbone O, Danieli JC, Vallés JM, editors. Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del XVIII Congreso Geológico Argentino. Buenos Aires: Asociación Geológica Argentina; p. 145–160.
  • Stenzel HB. 1971. Oysters. Treatise on Invertebrate Paleontology. Part N, Volume 3: mollusca 6 (Bivalvia). Kansas: Geological Society of America and Kansas University Press.
  • Taylor PD. 1990. Preservation of soft-bodied and other organisms by bioimmuration – a review. Palaeontology. 33:1–17.
  • Taylor PD, Lazo DG, Aguirre-Urreta MB. 2009. Lower Cretaceous bryozoans from Argentina: a ‘by-catch’ fauna from the Agrio Formation (Neuquén Basin). Cret Res. 30(1):193–203. doi:https://doi.org/10.1016/j.cretres.2008.07.003.
  • Taylor PD, Sequeiros L. 1982. Toarcian bryozoans from Belchite in north-east Spain. Bull Br Mus (Nat Hist) Geol Ser. 36:117–129.
  • Taylor PD, Wilson MA. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Sci Rev. 62:1–103.
  • Tomašových A, Schlögl J, Biroň A, Hudáčková N, Mikuš T. 2017. Taphonomic clock and bathymetric dependence of cephalopod preservation in bathyal, sediment-starved environments. Palaios. 32(3):135–152. doi:https://doi.org/10.2110/palo.2016.039.
  • Toscano AG, Lazo DG, Luci L. 2018. Taphonomy and paleoecology of Lower Cretaceous oyster mass occurrences from west-central Argentina and evolutionary paleoecology of gregariousness in oysters. Palaios. 33(6):1–19. doi:https://doi.org/10.2110/palo.2017.096.
  • Uhrin AV, Slade CL, Holmquist JG. 2005. Self righting in the free-living coral Manicina areolata (Cnidaria: scleractinia): morphological constraints. Caribb J Sci. 41(2):277–282.
  • Vergani G, Arregui C, Carbone O 2011. Sistemas petroleros y tipos de entrampamientos en la Cuenca Neuquina. Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del XVIII Congreso Geológico Argentino. Buenos Aires: Asociación Geológica Argentina; p. 645–656.
  • Vergani GD, Tankard AJ, Belotti HJ, Welsink HJ. 1995. Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. In: Tankard AJ, Soruco S, Welsink HJ, editors. Petroleum basins of South America, Memoir Nº;62. Tulsa (OK): American Asociation of Petroleum Geologists; p. 383–402.
  • Wahl M. 2009. Epibiosis: ecology, effects and defense. In: Wahl M, editor. Marine hard bottom communities, Ecological Studies 206. Berlín-Heidelberg: Springer-Verlag; p. 61–72.
  • Weaver CE. 1931. Paleontology of the Jurassic and Cretaceous of West Central Argentina. Mem Univ Wash. 1:1–595.
  • Wilson MA, Feldman HR, Bowen JC, Avni Y. 2008. A new equatorial, very shallow marine sclerozoan fauna from the Middle Jurassic (late Callovian) of southern Israel. Palaeogeogr Palaeoclimatol Palaeoecol. 263(1–2):24–29. doi:https://doi.org/10.1016/j.palaeo.2008.01.024.
  • Wood R. 1999. Reef evolution. Oxford (NY): Oxford University Press.
  • Yamashiro H, Nishihira M. 1995. Phototaxis in Fungiidae corals (Scleractinia). Mar Biol. 124(3):461–465. doi:https://doi.org/10.1007/BF00363920.
  • Zatoń M, Borszcz T, Rakociński M. 2017. Temporal dynamics of encrusting communities during the Late Devonian: a case study from the Central Devonian Field, Russia. Paleobiology. 43(4):550–568. doi:https://doi.org/10.1017/pab.2017.8.
  • Zuschin M, Mayrhofer S. 2009. Brachiopods from cryptic coral reef habitats in the northern Red Sea. Facies. 55:335–344.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.