Publication Cover
Historical Biology
An International Journal of Paleobiology
Volume 33, 2021 - Issue 12
308
Views
9
CrossRef citations to date
0
Altmetric
Research Article

An updated scenario for the end-Permian crisis and the recovery of Triassic land flora in Argentina

ORCID Icon, ORCID Icon, &
Pages 3654-3672 | Received 17 Dec 2020, Accepted 27 Jan 2021, Published online: 04 Mar 2021

References

  • Anderson JM, Anderson HM. 1993. Terrestrial flora and fauna of the Gondwana Triassic: part 2. Co-evolution. In: S Lucas SG, Morales M, editors. The Nonmarine Triassic, Vol. 3, Bulletin. Albuquerque: New Mexico Museum of Natural History and Science; p. 13–25.
  • Anderson JM, Anderson HM, Archangelsky S, Bamford M, Chandra S, Dettmann M, Hill R, McLoughin S, Rösler O 1999. Patterns of Gondwana Plant colonization and diversification.
  • Andreis RR, Japas S. 1996. Cuencas Sauce Grande y Colorado. In: Archangelsky S, editor. El Sistema Pérmico en Argentina y Uruguay. Córdoba: Academia Nacional de Ciencias; p. 45–64.
  • Archangelsky S. 1986. Late Paleozoic Floras of the Southern Hemisphere: distribution, Composition, Paleoecology. Stud Geology. 15:128–142. doi:https://doi.org/10.1017/S0271164800001378.
  • Archangelsky S, Césari S, Cúneo R. 2004. On some similar Patagonian and Indian Permian Ferns. In: Srivastava PC, editor. Vistas in Palaeobotany and Plant Morphology: evolutionary and Environmental Perspectives. Lucknow U.P: Offset; p. 71–81. Prof. D.D. Pant Memorial Volumen.
  • Archangelsky S, Jalfin GA, Cúneo NR. 1996. Cuenca La Golondrina. In: Archangelsky S, editor. El Sistema Pérmico en Argentina y Uruguay. Córdoba: Academia Nacional de Ciencias; p. 93–108.
  • Artabe AE. 1985a. Estudio sistemático de la tafoflora triásica de Los Menucos, provincia de Río Negro, Argentina. Sphenophyta, Filicophyta, Pteridospemophyta. Ameghiniana. 22(1–2):3–22.
  • Artabe AE. 1985b. Estudio sistemático de la tafoflora triásica de Los Menucos. provincia de Río Negro, Argentina. Cycadophyta, Ginkgophyta y Coniferophyta. Ameghiniana. 22(3–4):159–180.
  • Artabe AE, Brea M. 2003. A new approach to Corystospermales based on Triassic permineralized stems from Argentina. Alcheringa: An Australasian Journal of Palaeontology. 27(3):209–229. doi:https://doi.org/10.1080/03115510308619353.
  • Artabe AE, Morel EM, Ganuza DG. 2007. Las floras triásicas de la Argentina. Publ Electrón Asoc Paleontol Argent. 11:75–86.
  • Artabe AE, Morel EM, Spalletti LA. 2001. Paleoecología de las floras triásicas argentinas. In: Artabe AE, Morel EM, Zamuner AB, editors. Francisco Pascasio Moreno. La Plata: Fundación Museo de La Plata; p. 199–225. El Sistema Triásico de Argentina.
  • Artabe AE, Morel EM, Spalletti LA. 2003. Caracterización de las provincias fitogeográficas triásicas del Gondwana extratropical. Ameghiniana. 40(3):387–405.
  • Ávila JN, Chemale J, Mallmann G, Kawashita K, Armstrong R. 2006. Combined stratigraphic and isotopic studies of Triassic strata, Cuyo Basin, Argentine Precordillera. GSA Bull. 118(9–10):1088–1098. doi:https://doi.org/10.1130/B25893.1.
  • Azcuy C, Beri A, Bernardes-de-Oliveira MEC, Carrizo HA, Di Pasquo M, Díaz Saravia P, González C, Iannuzzi R, Lemos VB, Melo JG, et al. 2007. Bioestratigrafía del Paleozoico Superior de Américadel Sur: primera Etapa de Trabajo Hacia una Nueva Propuesta Cronoestratigráfica. Buenos Aires: asociación Geológica Argentina. (Serie D, Publicación Especial; 11).
  • Ballivián Justiniano CA, Comerio MA, Otero G, Sato AM, Coturel EP, Naipauer M, Basei MAS. 2020. Geochemical, palaeontological, and sedimentological approaches of a syn-orogenic clastic wedge: implications for the provenance of the Permian (Cisuralian) Tunas formation, Ventania system (Argentina). J S Am Earth Sci. 104:102836. doi:https://doi.org/10.1016/j.jsames.2020.102836.
  • Basu AR, Petaev MI, Poreda RJ, Jacobsen SB, Becker L. 2003. Chondritic meteorite fragments associated with the Permian-Triassic boundary in Antarctica. Science. 302(5649):1388–1395. doi:https://doi.org/10.1126/science.1090852.
  • Becker L, Poreda RJ, Hunt AG, Bunch TE, Rampino M. 2001. Impact event at the Permian–Triassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science. 291(5508):1530–1533. doi:https://doi.org/10.1126/science.1057243.
  • Beltrán M, Bodnar J, Coturel EP. 2018. Lycopodites (Lycopodiidae, Lycopodiales): a new integrant of the Triassic floras from Argentina. Rev Mus Argentino Cienc Nat Ns. 20(2):205–216. doi:https://doi.org/10.22179/REVMACN.20.599.
  • Beltrán M, Bodnar J, Melchor R. 2021. The genera Heidiphyllum and Dordrechtites, and associated fossil wood from the Triassic Ischichuca Formation, Northwestern Argentina. J S Am Earth Sci. 107:103142. doi:https://doi.org/10.1016/j.jsames.2020.103142.
  • Beltrán M, Bodnar J, Pipo ML, Coturel EP, Drovandi JM, Savoretti A. 2019. Nuevo registro de Tranquiloxylon, tronco fósil de Umkomasiaceae (Gymnospermopsida), del Triásico Medio de la Provincia de San Juan, Argentina. XXXVII Jornadas Argentinas de Botánica (Tucumán). Bol. Soc. Argent. Bot. 54(Supl.):274–275.
  • Benton MJ. 2003. When Life Nearly Died. In: The Greatest Mass Extinction of All Time. London: Thames & Hudson.
  • Benton MJ, Newell AJ. 2014. Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Res. 25(4):1308–1337.
  • Benton MJ, Twitchett RJ. 2003. How to kill (almost) all life: the end-Permian extinction event. Trends in Ecol Evol. 18(7):358–365. doi:https://doi.org/10.1016/S0169-5347(03)00093-4.
  • Berner RA. 2002. Examination of hypotheses for the Permo–Triassic boundary extinction by carbon cycle modeling. Proc Natl Acad Sci USA. 99(7):4172–4177. doi:https://doi.org/10.1073/pnas.032095199.
  • Blomenkemper P, Kerp H, Abu Hamad A, Dimichele WA, Bomfleur B. 2018. A hidden cradle of plant evolution in Permian tropical lowlands. Science. 362(6421):1414–1416. doi:https://doi.org/10.1126/science.aau4061.
  • Bodnar J, Drovandi JM, Morel EM, Ganuza DG. 2018. Middle Triassic Dipteridaceae (Gleicheniales, Polypodiopsida) of west-central Argentina and their relation with palaeoclimatic changes. Acta Palaeontol Pol. 63(2):397–416. doi:https://doi.org/10.4202/app.00459.2018.
  • Bodnar J, Falco JI. 2018. Fossil conifer woods from Cerro Piche graben (Triassic- Jurassic?) North Patagonian massif. Rio Negro Province, Argentina. Ameghiniana. 55(3):356–362.
  • Bodnar J, Iglesias A, Colombi CE, Drovandi JM. 2019a. Stratigraphical, sedimentological and palaeofloristic characterization of Sorocayense Group (Triassic) in Barreal Area, San Juan Province, Argentina. Andean Geol. 46(3):567–603. doi:https://doi.org/10.5027/andgeoV46n3-3127.
  • Bodnar J, Savoretti A, Beltrán M, Drovandi JM, Coturel EP. 2019b. Briofitas fósiles del Triásico Medio del Grupo Sorocayense, provincia de San Juan, Argentina. XXXVII Jornadas Argentinas de Botánica (Tucumán). Bol. Soc. Argent. Bot. 54 (Supl.): . 275–276.
  • Burgess SD, Bowring S, Shen S-Z. 2014. High-precision timeline for Earth’s most severe extinction. Proc Natl Acad Sci USA. 111(9):3316–3321. doi:https://doi.org/10.1073/pnas.1317692111.
  • Cariglino B. 2011. El Pérmico de la cuenca La Golondrina: paleobotánica, bioestratigrafia y consideraciones paleoecológicas [dissertation]. La Plata: Universidad Nacional de La Plata.
  • Cariglino B. 2013. Permian glossopterid scale leaves from the La Golondrina Formation (Santa Cruz, Argentina): the neglected members of Glossopteris floras. Rev Mus Argentino Cienc Nat Ns. 15(1):61–70. doi:https://doi.org/10.22179/REVMACN.15.168.
  • Cariglino B. 2015. New glossopterid polysperms from the permian La Golondrina Formation (Santa Cruz Province, Argentina): potential affinities and biostratigraphic implications. Rev Bras De Paleontol. 18(3):379–390. doi:https://doi.org/10.4072/rbp.2015.3.04.
  • Cariglino B, Coturel EP, Gutiérrez PR. 2012. The lycophytes of the La Golondrina Formation (Permian). Santa Cruz Province, Argentina: Systematic Revision, Biostratigraphy and Palaeoecology. Alcheringa. 36(4):427–449.
  • Cariglino B, Monti M, Zavattieri AM. 2018. A Middle Triassic macroflora from southwestern Gondwana (Mendoza, Argentina) with typical Northern Hemisphere elements: biostratigraphic, palaeogeographic and palaeoenvironmental implications. Rev Palaeobot Palynol. 257:1–18. doi:https://doi.org/10.1016/j.revpalbo.2018.06.004.
  • Cariglino B, Zavattieri AM, Gutiérrez PR, Balarino ML. 2016. The paleobotanical record of the Triassic Cerro de las Cabras Formation at its type locality. Potrerillos, Mendoza (Uspallata Group): An Historical Account and First Record of Fossil Flora. Ameghiniana. 53(2):184–204.
  • Cascales-Miñana B, Cleal CJ. 2014. The plant fossil record reflects just two great extinction events. Terra Nova. 26(3):195–200. doi:https://doi.org/10.1111/ter.12086.
  • Cascales-Miñana B, Diez JB, Gerrienne P, Cleal CJ. 2016. A palaeobotanical perspective on the great end-Permian biotic crisis. Hist Biol. 28(8):1066–1074. doi:https://doi.org/10.1080/08912963.2015.1103237.
  • Césari SN, Gutiérrez PR. 2000. Palynostratigraphy of Upper Paleozoic sequences in Central-Western Argentina. Palynology. 24:113–146.
  • Césari SN, Gutiérrez PR, Sabattini N, Archangelsky A, Azcuy CL, Carrizo HA, Cisterna G, Crisafulli A, Cúneo RN, Díaz Saravia P, et al. 2007. Paleozoico Superior de Argentina: un registro fosilífero integral en el Gondwana occidental. Publ Electrón Asoc Paleontol Argent. 11: 35–54.
  • Chen Z-Q, Benton MJ. 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geosci. 5(6):375–383. doi:https://doi.org/10.1038/ngeo1475.
  • Cleal CJ, Thomas BA. 2019. Introduction to Plant Fossils. 2nd Edition. Cambridge Cambridge University Press.
  • Collinson JW, Hammer WR, Askin RA, Elliot DH. 2006. Permian-Triassic boundary in the central Transantarctic Mountains, Antarctica. GSA Bull. 118(5–6):747–763. doi:https://doi.org/10.1130/B25739.1.
  • Correa G, Bodnar J, Colombi C, Santi Malnis P, Praderio A, Martínez R, Apaldetti C, Fernández E, Abelín D, Alcober O. 2019. Systematics and taphonomy of the xyloflora from a new locality in the Upper Triassic Carrizal Formation of the El Gigantillo area (Marayes-El Carrizal Basin), San Juan, Argentina. J S Am Earth Sci. 90:94–106. doi:https://doi.org/10.1016/j.jsames.2018.11.027.
  • Coturel EP, Morel EM, Ganuza DG. 2016. Lycopodiopsids and equisetopsids from the Triassic of Quebrada de los Fósiles Formation, San Rafael Basin, Argentina. Geobios. 49(3):16–176. doi:https://doi.org/10.1016/j.geobios.2016.01.017.
  • Coturel EP, Savoretti A. 2018. Hepaticites (Marchantiophyta) in the Lower Permian Arroyo Totoral Formation (La Rioja Province, Argentina). Ameghiniana. 55(3):350–355. doi:https://doi.org/10.5710/AMGH.29.12.2017.3160.
  • Crane PR. 1996. The fossil history of the Gnetales. Int J Plant Sci. 157(6, Supp.): . 157(S6):S50–S57. doi:https://doi.org/10.1086/297403.
  • Crisafulli A, Lutz A. 2007. Eoguptioxylon antiqua nov. gen et sp. (Pteridospermae) del Pérmico Superior (Formación La Antigua), provincia de La Rioja, Argentina. Ameghiniana. 44(1):197–204.
  • Crisafulli A, Lutz A, Melchor R. 2000. Maderas gimnospérmicas de la Formación Carapacha (Pérmico). provincia de La Pampa, Argentina. Ameghiniana. 37(2):181–191.
  • Dickins JM. 1993. Climate of the Late Devonian to Triassic. Palaeogeogr Palaeoclimatol Palaeoecol. 100(1–2):89–94. doi:https://doi.org/10.1016/0031-0182(93)90034-G.
  • Dobruskina I. 1993. Relationships of floral and faunal evolution during the transition from the Paleozoic to the Mesozoic. In: Lucas SG, Morales M, editors. The Nonmarine Triassic. Albuquerque: New Mexico Museum of Natural History and Science; p. 107–112. (Bulletin 3).
  • Domeier M, van der Voo R, Tomezzoli RN, Tohver E, Hendriks BW, Torsvik TH, Vizán H, Domínguez A. 2011. Support for an “A-type” Pangea reconstruction from high-fidelity Late Permian and Early to Middle Triassic paleomagnetic data from Argentina. J Geophys Res. 116:B12114.
  • Escapa IH, Cúneo NR. 2006. Primer registro de Neocalamites (Halle) Vladimirovics en el Pérmico de Gondwana. Ameghiniana. 43(1):85–92.
  • Ezcurra MD, Fiorelli LE, Martinelli AG, Rocher S, von Baczko MB, Ezpeleta M, Taborda JRA, Hechenleitner EM, Trotteyn MJ, Desojo JB. 2017. Deep faunistic turnovers preceded the rise of dinosaurs in southwestern Pangaea. Nat Ecol Evol. 1(10):1477–1483. doi:https://doi.org/10.1038/s41559-017-0305-5.
  • Falco JI, Bodnar J, Del Río D. 2020. Revisión Estratigráfica del Grupo Los Menucos, Pérmico tardío-Triásico Inferior del Macizo Nordpatagónico, Provincia de Río Negro, Argentina. Rev Asoc Geol Argent. 77(4):530–550.
  • Falco JI, Bodnar J, Hauser N 2017. Reinterpretación geológica de los depósitos clásticos del Graben del Co. Piche en la Comarca Nordpatagónica, Prov. de Rio Negro. Actas XX Congreso Geológico Argentino, Sección Técnica 1- Estratigrafía. Tucumán, Argentina: Asociación Geológica Argentina; p. 58–63.
  • Falco JI, Hauser N, Olivera D, Bodnar J, Reimold WU. Forthcoming. A multi-proxy study of the Cerro Piche Graben - a Lower Jurassic basin in the central North Patagonian Massif, Argentina. J S Am Earth Sci.
  • Fielding CR, Frank TD, McLoughlin S, Vajda V, Mays C, Tevyaw AP, Winguth A, Winguth C, Nicoll RS, Bocking M, et al. 2019. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat Commun. 10(385):1–2. doi:https://doi.org/10.1038/s41467-018-07934-z
  • Galfetti T, Hochuli PA, Brayard A, Bucher H, Weissert H, Vigran JO. 2007. Smithian-Spathian boundary event: evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology. 35(4):291–294. doi:https://doi.org/10.1130/G23117A.1.
  • Gastaldo RA, DiMichele WA, Pfefferkorn HW. 1996. Out of the icehouse into the greenhouse: a late Paleozoic analog for modern global vegetational change. GSA Today. 6(10):1–7.
  • Gastaldo RA, Kamo SL, Neveling J, Geissman JW, Bamford M, Looy CV. 2015. Is the vertebrate-defined Permian-Triassic boundary in the Karoo Basin. South Africa, the Terrestrial Expression of the end-Permian Marine Event? Geology. 43(10):939–942.
  • Gastaldo RA, Neveling J, Clark CK, Newbury SS. 2009. The terrestrial Permian–Triassic boundary event bed is a nonevent. Geology. 37(3):199–202. doi:https://doi.org/10.1130/G25255A.1.
  • Grasby SE, Sanei H, Beauchamp B. 2011. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat Geosci. 4(2):104–107. doi:https://doi.org/10.1038/ngeo1069.
  • Grauvogel-Stamm L, Ash SR. 2005. Recovery of the Triassic land flora from the end-Permian life crisis. C R Palevol. 4(6–7):593–608. doi:https://doi.org/10.1016/j.crpv.2005.07.002.
  • Gulbranson EL, Ciccioli PL, Montañez IP, Marenssi SA, Limarino CO, Schmitz MD, Davydov V. 2015. Paleoenvironments and age of the Talampaya Formation: the Permo-Triassic boundary in northwestern Argentina. J S Am Earth Sci. 63:310–322. doi:https://doi.org/10.1016/j.jsames.2015.08.008.
  • Gutiérrez PR. 2006. La Antigua (Formación). In: Gutiérrez P, Ottone E, Japas S, editors. Léxico Estratigráfico de la Argentina. Volumen VII. Pérmico. Buenos Aires: Asociación Geológica Argentina; p. 143–144. (Serie “B” Didáctica y Complementaria 28).
  • Gutiérrez PR, Zavattieri AM. 2020. New Middle Triassic pollen taxa of the San Rafael Basin, Mendoza Province, Argentina. Ameghiniana. doi:https://doi.org/10.5710/AMGH.16.07.2020.3356.
  • Gutiérrez PR, Zavattieri AM, Ezpeleta M. 2014. Estudio palinológico de la Formación La Veteada en su localidad tipo (Pérmico Superior). Sierra de Famatina, La Rioja, Argentina. Granos de polen estriados, plicados y colpados. Ameghiniana. 51(6):529–555.
  • Gutiérrez PR, Zavattieri AM, Ezpeleta M. 2017. Palynology of the La Veteada Formation in its type locality (Lopingian). Famatina Range, La Rioja Province, Argentina. Spores. Ameghiniana. 54(4):441–464.
  • Gutiérrez PR, Zavattieri AM, Ezpeleta M, Astini RA. 2011. Palynology of the La Veteada Formation (Permian) at the Sierra de Narváez. Catamarca Province, Argentina. Ameghiniana. 48(2):154–176.
  • Gutiérrez PR, Zavattieri AM, Noetinger S. 2018. The Lopingian palynological Guttulapollenites hannonicus-Cladaitina veteadensis assemblage zone of Argentina, stratigraphical implications for Gondwana. J S Am Earth Sci. 88:673–692. doi:https://doi.org/10.1016/j.jsames.2018.09.004.
  • Hallam A. 1991. Why was there a delayed radiation after the end-Permian mass extinction? Hist Biol. 5(2–4):257–262. doi:https://doi.org/10.1080/10292389109380405.
  • Hauke RL. 1963. A taxonomic monograph of the genus Equisetum, subgenus Hippochaete Beih. Nova Hedwigia. 8:1–123.
  • Herbst R, Crisafulli A. 1997. Kaokoxylon zalesskyi (Sahni) Maheshwari (Coniferopsida), en el Pérmico superior del Cerro Colorado de la Antigua, La Rioja, Argentina. Ameghiniana. 34(4):447–451.
  • Hochuli PA, Sanson-Barrera A, Schneebeli-Hermann E, Bucher H. 2016. Severest crisis overlooked-Worst disruption of terrestrial environments postdates the Permian-Triassic mass extinction. Sci. Rep. 6(1):28372. doi:https://doi.org/10.1038/srep28372.
  • Holmes WBK. 1992. Glossopteris-like leaves from the Triassic of eastern Australia. Geophytology. 22:119–125.
  • Iglesias A, Artabe AE, Morel EM. 2011. The evolution of Patagonian climate and vegetation from the Mesozoic to the Present. Biol J Linn Soc. 103(2):409–422. doi:https://doi.org/10.1111/j.1095-8312.2011.01657.x.
  • Jalfin G, Cúneo NR, Archangelsky S. 1990. Paleoambientes, paleobotánica y bioestratigrafía de la Formación La Golondrina en la localidad Dos Hermanos, Pérmico superior, Santa Cruz, Argentina. Annual Meeting Working Group, Project 211-IGCP, Abstracts; Buenos Aires, Argentina. P. . 18–20.
  • Jin YG, Wang Y, Wang W, Shang QH, Cao CQ, Erwin DH. 2000. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science. 289(5478):432–436. doi:https://doi.org/10.1126/science.289.5478.432.
  • Kent DV, Santi Malnis P, Colombi CE, Alcober OA, Martínez RN. 2014. Age constraints on the dispersal of dinosaurs in the Late Triassic from magnetochronology of the Los Colorados Formation (Argentina). Proc Natl Acad Sci USA. 111(22):7958–7963. doi:https://doi.org/10.1073/pnas.1402369111.
  • Kustatscher E, Ash SR, Karasev E, Pott C, Vajda V, Yu J, McLoughlin S. 2018. Flora of the Late Triassic. In: Tanner LH, editor. The Late Triassic World. Cham: Springer International Publishing; p. 545–622.
  • Labandeira CC, Sepkoski JJ Jr. 1993. Insect diversity in the fossil record. Science. 261(5119):310–315. doi:https://doi.org/10.1126/science.11536548.
  • Labudia CH, Artabe AE, Morel EM, Bjerg E, Gregori D. 1992. El género Pleuromeia Corda (Lycophyta, Pleuromeiaceae) en sedimentitas triásicas de Coli Niyeu, provincia de Río Negro, Argentina. Ameghiniana. 29(3):195–199.
  • Labudia CH, Bjerg EA. 2001. El Grupo Los Menucos: redefinición estratigráfica del Triásico superior del Macizo Nordpatagónico. Rev Asoc Geol Argent. 56(3):404–407.
  • Labudia CH, Bjerg EA 2005. Geología del Grupo Los Menucos, Comarca Nordpatagónica, Argentina. 16° Congreso Geológico Argentino, Actas 1. La Plata, Argentina: Asociación Geológica Argentina. p. 233–238.
  • Labudia CH, Llambías E, Rapela CW, Artabe AE. 1995. El Triásico de Los Menucos: procesos Volcánicos y Sedimentarios. 2° Reunión de Triásico del Cono Sur, Actas. Bahía Blanca (Argentina): Universidad Nacional del Sur; p. 17–21.
  • Leanza H. 2009. Las principales discordancias del Mesozoico de la Cuenca Neuquina según observaciones de superficie. Rev Mus Argentino Cienc Nat Ns. 11(2):145–184. doi:https://doi.org/10.22179/REVMACN.11.257.
  • Lema H, Busteros A, Giacosa RE, Cucchi R. 2008. Geología del Complejo volcánico Los Menucos en el área tipo - Río Negro. Rev Asoc Geol Argent. 63(1):3–13.
  • Limarino CO, Césari SN, Spalletti LA, Taboada AC, Isbell JL, Geuna S, Gulbranson EL. 2014. A paleoclimatic review of southern South America during the late Paleozoic: a record from icehouse to extreme greenhouse conditions. Gondwana Res. 25(4):1396–1421. doi:https://doi.org/10.1016/j.gr.2012.12.022.
  • Llambías EJ, Kleiman E, Salvarredi JA. 1993. El magmatismo gondwánico. In: Ramos VA, editor. Geología y Recursos Naturales de Mendoza, XII Congreso Geológico Argentino y 11 Congreso de Exploración de Hidrocarburos. Buenos Aires: Asociación Geológica Argentina; p. 53–64.
  • Looy CV, Brugman WA, Dilcher DL, Visscher H. 1999. The delayed resurgence of equatorial forests after the Permian–Triassic ecologic crisis. Proc. Natl. Acad. Sci. 96(24):13857–13862. doi:https://doi.org/10.1073/pnas.96.24.13857.
  • Lucas SG. 2017. Permian tetrapod extinction events. Earth-Sci. Rev. 170:31–60.
  • Luppo T, Lopez de Luchi MG, Rapalini AE, Martínez Dopico CI, Fanning CM. 2018. Geochronologic evidence of a large magmatic province in northern Patagonia encompassing the Permian-Triassic boundary. J S Am Earth Sci. 82:346–355. doi:https://doi.org/10.1016/j.jsames.2018.01.003.
  • Mancuso AC, Benavente CA, Irmis RB, Mundil R. 2020. Evidence for the Carnian Pluvial Episode in Gondwana: new multiproxy climate records and their bearing on early dinosaur diversification. Gondwana Res. 86:104–125.
  • Marsicano CA, Irmis RB, Mancuso AC, Mundil R, Chemale F. 2016. The precise temporal calibration of dinosaur origins. Proc Natl Acad Sci USA. 113(3):509–513. doi:https://doi.org/10.1073/pnas.1512541112.
  • Martínez RN, Sereno PC, Alcober OA, Colombi CE, Renne PR, Montañez IP, Currie BS. 2011. A basal dinosaur from the dawn of the Dinosaur Era in southwestern Pangaea. Science. 331(6014):206–210. doi:https://doi.org/10.1126/science.1198467.
  • McElwain JC, Punyasena SW. 2007. Mass extinction events and the plant fossil record. Trends Ecol. Evol. 22(10):548–557. doi:https://doi.org/10.1016/j.tree.2007.09.003.
  • McLoughlin S, Lindstrom S, Drinnan AN. 1997. Gondwanan floristic and sedimentological trends during the Permian-Triassic transition: new evidence from the Amery Group, northern Prince Charles Mountains, East Antarctica. Antarct Sci. 9(3):281–298. doi:https://doi.org/10.1017/S0954102097000370.
  • Melchor R, Césari S. 1997. Permian floras from Carapacha Basin. Central Argentina. Description and Importance. Geobios. 30(5):607–633.
  • Melchor RN. 1999. Redefinición estratigráfica de la Formación Carapacha (Pérmico), Provincia de La Pampa. Rev Asoc Geol Argent. 54(2):99–108.
  • Melchor RN. 2007. Changing lake dynamics and sequence stratigraphy of synrift lacustrine strata in a half-graben: an example from the Triassic Ischigualasto-Villa Unión Basin. Argentina. Sedimentology. 54(6):1417–1446. doi:https://doi.org/10.1111/j.1365-3091.2007.00887.x.
  • Meyen SV. 1987. Fundamentals of Palaeobotany. London: Chapman & Hall.
  • Monti M, Franzese JR. 2016. Análisis tectonoestratigráfico del Grupo Puesto Viejo (San Rafael, Argentina): evolución de un rift continental triásico. Lat Am J Sedimentol Basin Anal. 23(1):1–33.
  • Morel EM, Artabe AE 1994. La “Flora de Pleuromeia” en la Formación Puesto Viejo (Triásico) de la Provincia de Mendoza, Argentina. Actas 6° Congreso Argentino de Paleontología y Bioestratigrafía, p. 4, Trelew, Argentina.
  • Morel EM, Artabe AE, Spalletti LA. 2003. The Triassic floras of Argentina: biostratigraphy. Floristic Events and Comparison with Other Areas of Gondwana and Laurasia. Alcheringa. 27(3):231–243.
  • Morel EM, Artabe AE, Zavattieri AM, Bonaparte J. 2001. Cronología del Triásico de Argentina. In: Artabe AE, Morel EM, Zamuner AB, editors. Francisco Pascasio Moreno. La Plata: Fundación Museo de La Plata; p. 227–253. El Sistema Triásico de Argentina.
  • Neish PG, Drinnan AN, Cantrill DJ. 1993. Structure and ontogeny of Vertebraria from silicified Permian sediments in East Antarctica. Rev Palaeobot Palynol. 79(3–4):221–243. doi:https://doi.org/10.1016/0034-6667(93)90024-O.
  • Nelson DA, Cottle JM. 2019. Tracking voluminous Permian volcanism of the Choiyoi Province into central Antarctica. Lithosphere. 11(3):386–398. doi:https://doi.org/10.1130/L1015.1.
  • Neveling J, Gastaldo RA, Kamo SL, Geissman JW, Looy CV, Bamford MK. 2016. A Review of Stratigraphic, Geochemical, and Paleontologic Data of the Terrestrial End-Permian Record in the Karoo Basin, South Africa. In: Linol B, de Wit M, editors. Origin and Evolution of the Cape Mountains and Karoo Basin. Regional Geology Reviews. Cham: Springer; p. 151–157.
  • Nowak H, Schneebeli-Hermann E, Kustatscher E. 2019. No mass extinction for land plants at the Permian–Triassic transition. Nat Commun. 10(1):384. doi:https://doi.org/10.1038/s41467-018-07945-w.
  • Nowak H, Vérard C, Kustatscher E. 2020. Palaeophytogeographical Patterns Across the Permian–Triassic Boundary. Front. Earth Sci. 8:613350. doi:https://doi.org/10.3389/feart.2020.613350.
  • Ottone E, Archangelsky S. 2001. A new bryophyte from the Upper Carboniferous of Argentina. Ameghiniana. 38(2):219–223.
  • Ottone EG, Monti M, Marsicano CA, Marcelo S, Naipauer M, Armstrong R, Mancuso AC. 2014. A new Late Triassic age for the Puesto Viejo Group (San Rafael depocenter, Argentina): SHRIMP U–Pb zircon dating and biostratigraphic correlations across southern Gondwana. J S Am Earth Sci. 56:186–199. doi:https://doi.org/10.1016/j.jsames.2014.08.008.
  • Payne JL, Lehrmann DJ, Follet D, Siebel M, Kump LR, Riccardi A, Altiner D, Sano H, Wei J. 2007. Erosional truncation of uppermost Permian shallow‐marine carbonates and implications for Permian‐Triassic boundary events. Geol. Soc. Am. Bull. 119(7–8):771–784. doi:https://doi.org/10.1130/B26091.1.
  • Pott C, McLoughlin S. 2014. Divaricate growth habit in Williamsoniaceae (Bennettitales): unravelling the ecology of a key Mesozoic plant group. Palaeobio Palaeoenv. 94(2):307–325. doi:https://doi.org/10.1007/s12549-014-0157-9.
  • Prevec R, Labandeira CC, Neveling J, Gastaldo RA, Looy CV, Bamford M. 2009. Portrait of a Gondwanan ecosystem: a new late Permian fossil locality from KwaZulu-Natal, South Africa. Rev Palaeobot Palynol. 156(3–4):454–493. doi:https://doi.org/10.1016/j.revpalbo.2009.04.012.
  • Rakotosolofo NA. 2004. Palaeozoic and Mesozoic Palaeomagnetism of South America: results from Peru, Bolivia, Argentina, and Brazil [dissertation]. Munich: Ludwig-Maximilians-Universität München.
  • Rampino MR, Shen S-Z. 2019. The end-Guadalupian (259. 8 Ma) Biodiversity Crisis: The Sixth Major Mass Extinction? Hist Biol. 1–7. doi:https://doi.org/10.1080/08912963.2019.16580996.
  • Rapela CW, Pankhurst R, Llambías EJ, Labudía CH, Artabe AE 1996. “Gondwana” magmatism of Patagonia: inner Cordilleran calc-alkaline batholiths and bimodal volcanic provinces. III International Symposium on “Andean Geodynamics” Extended Abstracts Saint Malo: Institut Français de Recherche Scientifique pour le Développement en Coopération and Géosciences Rennes; p. 791–794.
  • Rayner RJ. 1992. Phyllotheca: the pastures of the Late Permian. Palaeogeogr Palaeoclimatol Palaeoecol. 92(1–2):31–40. doi:https://doi.org/10.1016/0031-0182(92)90133-P.
  • Rees PM. 2002. Land-plant diversity and the end-Permian mass extinction. Geology. 30(9):827–830. doi:https://doi.org/10.1130/0091-7613(2002)030<0827:LPDATE>2.0.CO;2.
  • Retallack GJ. 1977. Reconstructing Triassic vegetation of eastern Australasia: a new approach for the biostratigraphy of Gondwanaland. Alcheringa. 1(3):247–278. doi:https://doi.org/10.1080/03115517708527763.
  • Retallack GJ. 1995. Permian–Triassic life crisis on land. Science. 267(5194):77–80. doi:https://doi.org/10.1126/science.267.5194.77.
  • Retallack GJ. 1997. Earliest Triassic origin of Isoetes and quillwort evolutionary radiation. J Paleontol. 71(3):500–521. doi:https://doi.org/10.1017/S0022336000039524.
  • Retallack GJ, Jahren AH. 2008. Methane release from igneous intrusion of coal during Late Permian extinction events. The Journal of Geology. 116(1):1–20. doi:https://doi.org/10.1086/524120.
  • Retallack GJ, Metzger CA, Greaver T, Jahren AH, Smith RMH, Sheldon ND. 2006. Middle–Late Permian mass extinction on land. GSA Bull. 118(11–12):1398–1411. doi:https://doi.org/10.1130/B26011.1.
  • Retallack GJ, Seyedolai A, Krull ES, Holser WT, Ambers CP, Kyte FT. 1998. Search for evidence of impact at the Permian-Triassic boundary in Antarctica and Australia. Geology. 26(11):979–982. doi:https://doi.org/10.1130/0091-7613(1998)026<0979:SFEOIA>2.3.CO;2.
  • Retallack GJ, Veevers JJ, Morante R. 1996. Global coal gap between Permian–Triassic extinction and Middle Triassic recovery of peat-forming plants. Geol. Soc. Am. Bull. 108(2):195–207. doi:https://doi.org/10.1130/0016-7606(1996)108<0195:GCGBPT>2.3.CO;2.
  • Romano C, Goudemand N, Vennemann TW, Ware D, Schneebeli-Hermann E, Hochuli PA, Brühwiler T, Brinkmann W, Bucher H. 2013. Climatic and biotic upheavals following the end-Permian mass extinction. Nature Geosci. 6(1):57–60. doi:https://doi.org/10.1038/ngeo1667.
  • Saito R, Kaiho K, Oba M, Takahashi S, Chen ZQ, Tong J. 2013. A terrestrial vegetation turnover in the middle of the Early Triassic. Glob. Planet. Change. 105:152–159. doi:https://doi.org/10.1016/j.gloplacha.2012.07.008.
  • Sato AM, Llambías EJ, Basei MAS, Castro CE. 2015. Three stages in the Late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins. J S Am Earth Sci. 63:48–69. doi:https://doi.org/10.1016/j.jsames.2015.07.005.
  • Schneebeli-Hermann E, Kürschner WM, Hochuli PA, Ware D, Weissert H, Bernasconi SM, Roohi G, ur-Rehman K, Goudemand N, Bucher H. 2013. Evidence for atmospheric carbon injection during the end-Permian extinction. Geology. 41(5):579–582. doi:https://doi.org/10.1130/G34047.1.
  • Shen S, Crowley JL, Wang Y, Bowring SA, Erwin DH, Sadler PM, Cao C, Rothman DH, Henderson CM, Ramezani J, et al. 2011. Calibrating the End-Permian mass extinction. Science. 334(6061):1367–1372. doi:https://doi.org/10.1126/science.1213454
  • Song H, Wignall P, Tong J, Yin H. 2012. Two pulses of extinction during the Permian–Triassic crisis. Nature Geosci. 6(1):52–56. doi:https://doi.org/10.1038/ngeo1649.
  • Spalletti LA, Artabe AE, Morel EM. 2003. Geological factors and evolution of southwestern Gondwana Triassic plants. Gondwana Res. 6(1):119–134. doi:https://doi.org/10.1016/S1342-937X(05)70648-1.
  • Spalletti LA, Artabe AE, Morel EM, Brea M. 1999. Biozonación paleoflorística y cronoestratigrafía del Triásico Argentino. Ameghiniana. 36(4):419–451.
  • Spalletti LA, Fanning CM, Rapela CW. 2008. Dating the Triassic continental rift in the southern Andes: the Potrerillos Formation, Cuyo Basin, Argentina. Geol Acta. 6(3):267–283.
  • Spalletti LA, Limarino CO. 2017. The Choiyoi magmatism in southwestern Gondwana: implications for the end-permian mass extinction - a review. Andean Geol. 44(3):328–338. doi:https://doi.org/10.5027/andgeoV44n3-a05.
  • Stipanicic PN, González Diaz EF, Zavattieri AM. 2007. Grupo Puesto Viejo nom. transl. por Formación Puesto Viejo González Díaz, 1964, 1967: nuevas interpretaciones paleontológicas, estratigráficas y cronológicas. Ameghiniana. 44(4):759–761.
  • Stipanicic PN, Riccardi AC. 2002. Nota 2, De carácter particular: para la Biozona de Asociación Dictyophyllum castellanosii, Johnstonia stelzneriana y Saportaea dichotoma. In: Léxico estratigráfico de la Argentina Volumen VIII. Buenos Aires: Asociación Geológica Argentina; p. 118–120. Stipanicic PN, Marsicano CA. (Serie “B” Didáctica y Complementaria 26).
  • Taylor EL, Taylor TN, Krings M. 2009. Paleobotany: the Biology and Evolution of Fossil Plants. Burlington: Academic Press Inc.
  • Tomezzoli RN, Melchor RN, MacDonald WD. 2006. Tectonic implications of post-folding Permian magnetizations in the Carapacha Basin, La Pampa province, Argentina. Earth Planet Sp. 58(10):1235–1246. doi:https://doi.org/10.1186/BF03352619.
  • Webb DT, Osborne R. 1989. Cycads. In. Bajaj YPS, Trees II., . Vol. 5. Biotechnology in Agriculture and Forestry. Berlin (Heidelberg): Springer; p. 591–613
  • Wignall PB. 2001. Large igneous provinces and mass extinctions. Earth Sci Rev. 53(1–2):1–33. doi:https://doi.org/10.1016/S0012-8252(00)00037-4.
  • Zamuner AB, Morel EM, Melchor R 1998. Nuevos elementos florísticos en la localidad tipo de la Formación Ischichuca, Provincia de La Rioja. 7° Congreso argentino de Paleontología y Bioestratigrafía, Resúmenes. Bahía Blanca: Argentina. p. 11.
  • Zamuner AB, Zavattieri AM, Artabe AE, Morel EM. 2001. Paleobotánica. In: Artabe AE, Morel EM, Zamuner AB, editors. Francisco Pascasio Moreno. La Plata: Fundación Museo de La Plata; p. 143–184. El Sistema Triásico de Argentina.
  • Zavattieri AM, Gutiérrez PR, Ezpeleta M. 2017. Syndesmorion stellatum (Fijałkowska) Foster et Afonin chlorophycean algae and associated microphytoplankton from lacustrine successions of the La Veteada Formation (late Permian), Paganzo Basin, Argentina. Paleoenvironmental Interpretations and Stratigraphic Implications. Rev Palaeobot Palynol. 242:1–20. doi:https://doi.org/10.1016/j.revpalbo.2017.02.011.
  • Zavattieri AM, Gutiérrez PR, Ezpeleta M. 2018. Gymnosperm pollen grains from the La Veteada Formation (Lopingian). Paganzo Basin, Argentina: Biostratigraphic and Palaeoecological Implications. Alcheringa. 42(2):276–299.
  • Zavattieri AM, Melchor RN. 1999. Estudio palinológico preliminar de la Fm. Ischichuca (Triásico), en su localidad tipo (Quebrada de Ischichuca Chica), provincia de La Rioja, Argentina. Publ Electrón Asoc Paleontol Argent. 6: . 33–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.