Publication Cover
Historical Biology
An International Journal of Paleobiology
Volume 36, 2024 - Issue 4
326
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Differentiating taphonomic features from trampling and dietary microwear, an experimental approach

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 760-782 | Received 30 Nov 2022, Accepted 22 Feb 2023, Published online: 05 Mar 2023

References

  • Andrews P. 1995. Experiments in taphonomy. J. Archaeol. Sci 22(2):147–153. doi:10.1006/jasc.1995.0016.
  • Andrews P, Cook J. 1985. Natural modifications to bone in a temperate setting. Man. 20(4):675–691. doi:10.2307/2802756.
  • Baliran C. 2014. Trampling, taphonomy, and experiments with lithic artifacts in the southeastern Baguales Range (Santa Cruz. Argentina). Intersecciones en Antropología. 15(1):85–95. https://www.redalyc.org/articulo.oa?id=179538578007
  • Behrensmeyer A, Gordon K, Yanagi G. 1986. Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature. 319(6056):768–771. doi:10.1038/319768a0.
  • Benito-Calvo A, Martínez-Moreno J, Mora R, Roy M, Roda X. 2011. trampling experiments at cova gran de Santa Linya, pre-Pyrenees, Spain: Their relevance for archaeological fabrics of the upper-middle paleolithic assemblages. J. Archaeol. Sci 38(12):3652–3661. doi:10.1016/j.jas.2011.08.036.
  • Berlioz E, Leduc C, Hofman-Kamińska E, Bignon-Lau O, Kowalczyk R, Merceron G. 2022. Dental microwear foraging ecology of a large browsing ruminant in Northern Hemisphere: the European moose (Alces alces). Palaeogeogr. Palaeoclimatol. Palaeoecol 586(15):110754. doi:10.1016/j.palaeo.2021.110754.
  • Blasco R, Arilla M, Domínguez-Rodrígo M, Andrés M, Ramírez-Pedraza I, Rufà A, Rivals F, Rosell J. 2020. Who peeled the bones? An actualistic and taphonomic study of axial elements from Toll Cave Level 4, Barcelona, Spain. Quat. Sci. Rev 250:106661. doi:10.1016/j.quascirev.2020.106661
  • Blasco R, Rosell J, Peris JF, Caceres I, Verges JM. 2008. A new element of trampling: an experimental application on the Level XII faunal record of Bolomor Cave (Valencia, Spain). J. Archaeol. Sci 35(6):1605–1618. doi:10.1016/j.jas.2007.11.007.
  • Böhm K, Winkler DE, Kaiser TM, Tükten T. 2019. Post-mortem alteration of diet-related enamel surface textures through artificial biostratinomy: a tumbling experiment using mammal teeth. Palaeogeogr. Palaeoclimatol. Palaeoecol 518:215–231. doi:10.1016/j.palaeo.2019.01.008
  • Bonnichsen R. 1989. Constructing taphonomic models: theory, assumptions, and procedures. In: Bonnichsen R, Sorg M, editors. Bone modification. University of maine: centre for the Study of the First Americans. Orono; p. 515–526.
  • Bowen F, Carden RF, Daujat J, Groulard S, Miller H, Perdikaris S, Sykes N. 2016. Dama dentition: a new tooth eruption and wear method for assessing the age of fallow deer (Dama dama). Int. J. Osteoarchaeol 26(6):1089–1098. doi:10.1002/oa.2523.
  • Brain CK. 1967. Hottentot food remains and their bearing on the interpretation of fossil bone assemblages. Scientific Papers of the Namib Desert ResearchStation Vol. 32: 1–11 https://hdl.handle.net/10520/AJA0000008_120
  • Brain CK. 1981. The Hunters or the Hunted? an Introduction to African Cave Taphonomy. Chicago: University of Chicago Press.
  • Butler PM. 1952. The milk-molars of Perissodactyla with remarks on molar occlusion. Proc. Zool. Soc 121(4):777–817. doi:10.1111/j.1096-3642.1952.tb00784.
  • Camarós E, Cueto M, Teira L, Tapia J, Cubas M, Blasco R, Rosell J, Rivals F. 2013. Large carnivores as taphonomic agents of space modification: an experimental approach with archaeological implications. J. Archaeol. Sci 40(2):1361–1368. doi:10.1016/j.jas.2012.09.037.
  • Courtenay LA, Yravedra J, Huguet R, Ollé A, Aramendi J, Maté-González MA, González-Aguilera D. 2019. New taphonomic advances in 3D digital microscopy: a morphological characterisation of trampling marks. Quat. Int 517:55–66. doi:10.1016/j.quaint.2018.12.019
  • de la Peña P, Witelson D. 2018. Trampling vs. Retouch in a Lithic Assemblage: a Case Study from a Middle Stone Age Site, Steenbokfontein 9KR (Limpopo, South Africa). J. Field Archaeol 43(7):522–537. doi:10.1080/00934690.2018.1524219.
  • Domínguez-Rodrigo M, Alcalá L. 2016. 3.3-Million-year-old stone tools and butchery traces? More evidence needed. Paleoanthro. 46–53.
  • Domínguez-Rodrigo M, Barba R, Soto E, Sesé C, Santonja M, Pérez-González A, Yravedra J, Galán AB. 2015. Another window to the subsistence of Middle Pleistocene hominins in Europe: a taphonomic study of Cuesta de la Bajada (Teruel, Spain). Quat. Sci. Rev 126:67–95. doi:10.1016/j.quascirev.2015.08.020
  • Domínguez-Rodrigo M, De Juana S, Galán AB, Rodríguez M. 2009. A new protocol to differentiate trampling marks from butchery cut marks. J Archaeol Sci. 36:2643–2653. doi:10.1016/j.jas.2009.07.017
  • Domínguez-Rodrigo M, Pickering TR, Bunn HT. 2010. Configurational approach to identifying the earliest hominin butchers. Proc. Natl. Acad. Sci 107(49):20929–20934. doi:10.1073/pnas.1013711107.
  • Domínguez-Rodrigo M, Pickering TR, Bunn HT. 2012. Experimental study of cut marks made with rocks unmodified by human flaking and its bearing on claims of 3.4-million-year-old butchery evidence from Dikika, Ethiopia. J. Archaeol. Sci 39(2):205–214. doi:10.1016/j.jas.2011.03.010.
  • El-Zaatari S. 2010. Occlusal microwear texture analysis and the diets of historical/prehistoric hunter-gatherers. Int. J. Osteoarchaeol 20(1):67–87. doi:10.1002/oa.1027.
  • Fernandez-Jalvo Y, Andrews P. 2016. Atlas of Taphonomic Identifications. Springer Dordrecht; p. 359. doi:10.1007/978-94-017-7432-1.
  • Fiorillo AR. 1989. An experimental study of trampling: implications for the fossil record. In: Bonnichsen R, Sorg M, editors. Bone Modification. Orono: University of Maine: Centre for the Study of the First Americans; p. 61–72.
  • Fortelius M. 1985. Ungulate cheek teeth: developmental, functional, and evolutionary interrelations. Acta Zool. Fennica. 180:1–76.
  • Gifford DP, Behrensmeyer AK. 1977. Observed formation and burial of a recent human occupation site in Kenya. Quaternary Research. 8(3):245–266. doi:10.1016/0033-5894(77).
  • Gordon KD. 1983. Taphonomy of dental microwear: can fossil microwear be studied productively? Am. J. Phys. Anthropol 60(2):200.
  • Gordon KD. 1984. Taphonomy of dental microwear. Am J Phys Anthropol. 64:164–165.
  • Grigoriadis A, Johansson RS, Trulsson M. 2014. Temporal profile and amplitude of human masseter muscle activity is adapted to food properties during individual chewing cycles. J. Oral. Rehabil 41(5):367–373. doi:10.1111/joor.12155.
  • Harmand S, Lewis J, Feibel C, Lepre CJ, Prat S, Lenoble A, Boës X, Quinn RL, Brenet M, Arroyo A, et al. 2015. 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature. 521:310–315. doi:10.1038/nature14464
  • Haynes G. 1986. Spiral fractures and cut mark mimics in noncultural elephant bone assemblages. Current Research in the Pleistocene. 3:45–46.
  • Haynes G. 1988. Longitudinal studies of African elephant death and bone deposits. J Archaeol Sci. 15(2):131–157.
  • Hernando R, Gamarra B, McCall A, Cheronet O, Fernandes D, Sirak K, Schmidt R, Lozano M, Szeniczey T, Hajdu T, et al. 2021. Integrating buccal and occlusal dental microwear with isotope analyses for a complete paleodietary reconstruction of Holocene populations from Hungary. Sci. Rep 11:7034. doi:10.1038/s41598-021-86369-x
  • Hernando R, Willman JC, Vergès JM, Vaquero M, Alonso S, Oms X, Morales JI, Lozano M. 2020. Inferring childhood dietary maturation using buccal and occlusal deciduous molar microwear: a case study from the recent prehistory of the Iberian Peninsula. Archaeol. Anthropol. Sci 12:30. doi:10.1007/s12520-019-00997-z
  • Hoffman JM, Fraser D, Clementz MT. 2015. Controlled feeding trials with ungulates: a new application of in vivo dental molding to assess the abrasive factors of microwear. J. Exp. Biol 218(10):1538–1547. doi:10.1242/jeb.118406.
  • Hua L, Chen J, Ungar PS. 2020. Diet reduces the effect of exogenous grit on tooth microwear. Biosurface and Biotribology. 6:48–52. doi:10.1049/bsbt.2019.0041
  • Jiménez-Manchón S, Valenzuela-Lamas S, Cáceres I, Orengo H, Gardeisen A, López Reyes D, Rivals F. 2019. Reconstruction of Caprine Management and Landscape Use Through Dental Microwear Analysis: the Case of the Iron Age Site of El Turó de la Font de la Canya (Barcelona, Spain). Environ. Archaeol 24(3):306–316. doi:10.1080/14614103.2018.1486274.
  • Kaiser TM, Braune C, Kalinka G, Schulz-Kornas E. 2018. Nano-indentation of native phytoliths and dental tissues: implications for herbivore-plant combat and dental wear proxies. Evol. Syst 2:55–63. doi:10.3897/evolsyst.2.22678
  • Karriger WM, Schmidt CW, Smith FH. 2016. . In: PaleoAnthropol. p. 172–184.
  • Kassambara A. 2017. Practical Guide to principal component methods in R (Multivariate Analysis). In: STHDA. p. 1975721136.
  • Kawaii N. 1955. Comparative anatomy of the bands of Schreger. Okajimas Folia Anat. Jpn. 27(2–3):115–131. doi:10.2535/ofaj1936.27.2-3_115.
  • Kay RF, Covert HH. 1983. True grit: a microwear experiment. Am. J. Phys. Anthropol 61(1):33–38. doi:10.1002/ajpa.1330610104.
  • King T, Andrews P, Boz B. 1999. Effect of taphonomic processes on dental microwear. Am. J. Phys. Anthropol 108(3):359–373.
  • Lalueza C, Pérez-Pérez A, Turbón D. 1996. Dietary inferences through buccal microwear analysis of Middle and Upper Pleistocene human fossils. Am. J. Phys. Anthropol. 100(3):367–387. doi:10.1002/(SICI)1096-8644(199607)100:3<367::.
  • López-García JM, Blain HA, Burjachs F, Ballesteros A, Allué E, Cuevas-Ruiz GE, Rivals F, Blasco R, Morales JI, Rodríguez-Hidalgo A, et al. 2012. A multidisciplinary approach to reconstructing the chronology and environment of southWestern European Neanderthals: the contribution of Teixoneres cave (Moià, Barcelona, Spain). Quat. Sci. Rev 43:33–44. doi:10.1016/j.quascirev.2012.04.008
  • Martínez LM, Pérez-Pérez A. 2004. Post-mortem wear as indicator of taphonomic processes affecting enamel surfaces of hominin teeth from Laetoli and Olduvai (Tanzania): implications to dietary interpretations. Anthropology. 42(1):37–42. http://www.jstor.org/stable/26292668
  • Marwick B, Hayes E, Clarkson C, Fullagar R. 2017. Movement of Lithics by Trampling: an Experiment in the Madjedbebe Sediments, Northern Australia. J Archaeol Sci. 79:73–85. doi:10.1016/j.jas.2017.01.008
  • Maureille B, Costamagno S, Beauval C, Mann AE, Garralda MD, Mussini C, Laroulandie V, Rendu W, Royer A, Seguin G, et al. 2017. The challenges of identifying partially digested human teeth: first description of Neandertal remains from the Mousterian site of Marillac (Marillac-le-Franc, Charente, France) and implications for palaeoanthropological research. PALEO. 28:201–212. doi:10.4000/paleo.3448
  • McPherron SP, Alemseged Z, Marean C, Wynn JG, Reed D, Geraads D, Bobe R, Béarat HA. 2010. Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia. Nature. 466:857–860. doi:10.1038/nature09248
  • McPherron SP, Braun DR, Dogandžić T, Archer W, Desta D, Lin SC. 2014. An experimental assessment of the influences on edge damage to lithic artifacts: a consideration of edge angle, substrate grain size, raw material properties, and exposed face. J Archaeol Sci. 49:70–82. doi:10.1016/j.jas.2014.04.003
  • Merceron G, Schulz E, Kordos L, Kaiser TM. 2007. Palaeoenvironment of Dryopithecus brancoi at Rudabánya, Hungary: evidence from dental meso- and microwear analysis of large herbivorous mammals. J. Hum. Evol 53(4):331–349. doi:10.1016/j.jhevol.2007.04.008.
  • Micó C, Arilla M, Rosell J, Villalba M, Santos E, Rivals F, Picin A, Talamo S, Blasco R. 2020. Among goats and bears: a taphonomic study of the faunal accumulation from Tritons Cave (Lleida, Spain). J. Archaeol. Sci. Rep 30:102194. doi:10.1016/j.jasrep.2020.102194
  • Mills JRE. 1955. Ideal dental occlusion in primates. Dental Practitioner. 6:47–61.
  • Navazo M, Benito-Calvo A, Alonso-Alcalde R, Alonso P, de la Fuente H, Santamaría M, Santamaría C, Álvarez-Vena A, Arnold LJ, Ma José Iriarte-Chiapusso MJ, et al. 2021. Late Neanderthal subsistence strategies and cultural traditions in the northern Iberia Peninsula: insights from Prado Vargas, Burgos, Spain. Quat. Sci. Rev. 254:106795. doi:10.1016/j.quascirev.2021.106795
  • Nielsen AE. 1991. Trampling the archaeological record: an experimental study. Am. Antiq 56(3):483–503. doi:10.2307/280897.
  • Outram AK. 2008. Introduction to experimental archaeology. World Archaeol. 40:1–6. doi:10.1080/00438240801889456
  • The Oxford English Dictionary. 2018. The Oxford English Dictionary. Oxford:Oxford University Press.
  • Pérez-Pérez A, Bermúdez DC, Arsuaga JM. 1999. Nonocclusal dental microwear analysis of 300,000-year-old Homo heidelbergensis teeth from Sima de los Huesos (Sierra de Atapuerca, Spain). Am. J. Phys. Anthropol 108(4):433–457. doi:10.1002/(SICI)1096-8644(199904)108:4<433::.
  • Pérez-Pérez A, Espurz V, Bermúdez DC, de Lumley JM, Turbón MA. 2003. Non-occlusal dental microwear variability in a sample of Middle and Late Pleistocene human populations from Europe and the Near East. J. Hum. Evol 44(4):497–513. doi:10.1016/S0047-2484(03).
  • Pérez-Pérez A, Lalueza C, Turbón D. 1994. Intraindividual and intragroup variability of buccal tooth striation pattern. Am. J. Phys. Anthropol 94(2):175–187. doi:10.1002/ajpa.1330940203.
  • Pfretzschner HU. 1992. Enamel microstructure and hypsodonty in large mammals. In: Smith P, Tchernov E, editors. Structure, Function and Evolution of Teeth. London and Tel Aviv: Freund Publishing House; p. 147–162.
  • Picin A, Blasco R, Rivals F, Chacón M, Gómez DS, Talamo B, Rosell S. 2020. Short-term neanderthal occupations and carnivores in the north-east of iberian peninsula. In: Cascalheira J, Picin A, editors. Short-term occupations in paleolithic archaeology: definition and Interpretation. Springer: Interdisciplinary Contribution to Archaeology; p. 183–213.
  • Puech PF, Prone A, Roth H, Cianfarani F. 1985. Reproduction expérimentale de processus d’usure des surfaces dentaires des Hominidés fossiles: conséquences morphoscopiques et exoscopiques avec application à l’Hominidé I de Garusi. Compt. Rend. Hebd. Séances Acad. Sci 301:59–64.
  • Ramírez-Pedraza I, Baryshnikov GF, Prilepskaya NE, Belyaev RI, Pappa RI, Rivals S. 2021. Paleodiet and niche partitioning among the easternmost European cave bears based on tooth wear analysis. Hist. Biol. 34(6):1063–1071. doi:10.1080/08912963.2021.1960324.
  • Ramírez-Pedraza I, Pappa S, Blasco R, Arilla M, Rosell J, Millán F, Maroto J, Soler J, Soler N, Rivals F. 2020. Dietary habits of the cave bear from the Late Pleistocene in the northeast of the Iberian Peninsula. Quat. Int. 557:63. doi:10.1016/j.quaint.2019.09.043
  • Ramírez-Pedraza I, Tornero C, Pappa S, Talamo S, Salazar-García DC, Blasco R, Rosell J, Rivals F. 2019. Microwear and isotopic analyses on cave bear remains from Toll Cave reveal both short-term and long-term dietary habits. Sci. Rep 9:5716. doi:10.1038/s41598-019-42152-7
  • Rivals F, Blasco R, Rosell J, Efrati B, Gopher A, Barkai R. 2021. Seasonality, duration of the hominin occupations and hunting grounds at Middle Pleistocene Qesem Cave (Israel). Archaeol. Anthropol. Sci 13:205. doi:10.1007/s12520-021-01460-8
  • Rivals F, Deniaux B. 2005. Investigation of human hunting seasonality through dental microwear analysis of two Caprinae in late Pleistocene localities in Southern France. J. Archaeol. Sci. 32(11):1603–1612. doi:10.1016/j.jas.2005.04.014
  • Rivals F, Prilepskaya NE, Belyaev RI, Pervushov EM, E.m. 2020a. Dramatic change in the diet of a late Pleistocene Elasmotherium population during its last days of life: implications for its catastrophic mortality in the Saratov region of Russia. Palaeogeogr. Palaeoclimatol. Palaeoecol 556(15):109898. doi:10.1016/j.palaeo.2020.109898.
  • Rivals F, Rabinovich R, Khalaily H, Valla F, Bridaul A. 2020b. Seasonality of the Final Natufian occupation at Eynan/Ain Mallaha (Israel): an approach combining dental ageing, mesowear and microwear. Archaeol. Anthropol. Sci 12:232. doi:10.1007/s12520-020-01190-3
  • Rivals F, Solounias N, Mihlbachler MC. 2007. Evidence for geographic variation in the diets of late Pleistocene and early Holocene Bison in North America, and differences from the diets of recent Bison. Quat. Res 68(3):338–346. doi:10.1016/j.yqres.2007.07.012.
  • Rodríguez-Rojas F, Borrero-Lopez O, Constantino PJ, Henry AG, Lawn BR. 2020. Phytoliths can cause tooth wear. J. R. Soc. Interface. 17(172):20200613. doi:10.1098/rsif.2020.0613.
  • Rosell J, Blasco R, Rivals F, Chacón MG, Arilla M, Camarós E, Rufà A, Sánchez-Hernández C, Picin A, Andrés M, et al. 2017. A resilient landscape at Teixoneres Cave (MIS 3; Moià, Barcelona, Spain): the Neanderthals as disrupting agent, Quat. Int. 435:195–210. doi:10.1016/j.quaint.2015.11.077
  • Rosell J, Blasco R, Rivals F, Chacón G, Blain H-A, López-García JM, Picin A, Camarós E, Rufà A, Sánchez-Hernández C, et al. 2014. Cova del Toll and Cova de les Teixoneres. In: Moià B, Sala R, editors. Pleistocene and holocene hunter-gatherers in Iberia and the Gibraltar strait: the current archaeological record. Burgos: University of Burgos and Fundación Atapuerca; p. 302–308.
  • Sánchez-Hernández C, Gourichon L, Blasco R, Carbonell E, Chacón G, Galván B, Hernández-Gómez CM, Rosell J, Saladié P, Soler N, et al. 2020b. High-resolution Neanderthal settlements in Mediterranean Iberian Peninsula: a matter of altitude? Quat. Sci. Rev 247(1):0277–3791. doi:10.1016/j.quascirev.2020.106523.
  • Sánchez-Hernández C, Gourichon L, Rendu PE, Montes W, Rivals R. 2019. Combined dental wear and cementum analyses in ungulates reveal the seasonality of Neanderthal occupations in Covalejos Cave (Northern Iberia). Sci. Rep 9:14335. doi:10.1038/s41598-019-50719-7
  • Sánchez-Hernández C, Gourichon L, Soler J, Soler N, Blasco R, Rosell J, Rivals F. 2020a. Dietary traits of ungulates in northeastern Iberian Peninsula: did these Neanderthal preys show adaptive behaviour to local habitats during the Middle Palaeolithic. Quat. Int 557(20):47–62. doi:10.1016/j.quaint.2020.01.008.
  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. 2012. Fiji: an open-source platform for biological-image analysis. Nat Methods. 9(7):676–682. doi:10.1038/nmeth.2019.
  • Schoville BJ, Brown KS, Harris JA, Wilkins J. 2016. New experiments and a model-driven approach for interpreting Middle Stone Age lithic point function using the edge damage distribution method. PLoS One. 11(10):1–32. doi:10.1371/journal.pone.0164088.
  • Serra-Ráfols JDC, Villalta JF, Thomas J, Fusté M. 1957. Livret Guide des excursions B2-B3. In: de Barcelona Et Moià A, editor. V Congrés International del INQUA. Madrid-Barcelona; p. 3.
  • Shipman P. 1981. Life History of a Fossil. In: An Introduction to Taphonomy and Paleoecology. Boston: Harvard.
  • Shipman P, Rose J. 1983. Early hominid hunting, butchering, and carcass-processing behaviors: approaches to the fossil record. J. Anthropol. Archaeol 2(1):57–98. doi:10.1016/0278-4165(83).
  • Shipman P, Rose J. 1988 Bone tools: an experimental approach. Olsen, S.L. (Eds) Scanning Electron Microscopy in Archaeology. British Archaeological Reports International Series Vol. 452 Oxford: 303–335.
  • Surhone L, Timpledon M, Marseken S. 2010. Spearman’s rank correlation coefficient: statistics, non-parametric statistics, raw score, null hypothesis, fisher transformation, statistical hypothesis testing, confidence interval, correspondence analysis. In: Betascript Publishing. p. 6130347561.
  • Talamo S, Blasco R, Rivals F, Picin A, Gema Chacón M, Iriarte E, López-García JM, Blain HA, Arilla M, Rufà A, et al. 2016. The Radiocarbon Approach to Neanderthals in a Carnivore Den Site: a Well-Defined Chronology for Teixoneres Cave (Moià, Barcelona, Spain). Radiocarbon. 58(2):247–265. doi:10.1017/RDC.2015.19.
  • Tanis BP, DeSantis LRG, Terry RC. 2018. Dental microwear textures across cheek teeth in canids: implications for dietary studies of extant and extinct canids. Palaeogeogr. Palaeoclimatol. Palaeoecol. 508(1):129–138. doi:10.1016/j.palaeo.2018.07.028.
  • Teaford MF, Ross CF, Ungar PS, Vinyard CJ, Laird MF. 2021. Grit your teeth and chew your food: implications of food material properties and abrasives for rates of dental microwear formation in laboratory Sapajus apella (Primates). Palaeogeogr. Palaeoclimatol. Palaeoecol 583:110644. doi:10.1016/j.palaeo.2021.110644
  • Teetor P. 2010. R Cookbook. O’Reilly Media Inc. United States of America.
  • Ungar PS, Abella EF, Burgman JHE, Lazagabaster IA, Scott JR, Delezene LK, Manthi FK, Plavcan JM, Ward CV. 2020. Dental microwear and Pliocene paleocommunityecology of bovids, primates, rodents, and suids at Kanapoi. J Hum Evol. 140:102315. doi:10.1016/j.jhevol.2017.03.005
  • Ungar PS, Grine FE, Teaford MF. 2008. Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei. PLoS ONE. 3(4):e2044. doi:10.1371/annotation/195120f0-18ee-4730-9bd6-0d6effd68fcf.
  • Uzunidis A, Pineda A, Jiménez-Manchón S, Xafis A, Ollivier V, Rivals F. 2021. The impact of sediment abrasion on tooth microwear analysis: an experimental study. Archaeol. Anthropol. Sci. 13:134. doi:10.1007/s12520-021-01382-5
  • Weber K, Winkler DE, Schulz-Kornas E, Kaiser TM, Tütken T. 2022. Post-mortem enamel surface texture alteration during taphonomic processes—do experimental approaches reflect natural phenomena? PeerJ. 10:e12635. doi:10.7717/peerj.12635
  • Yellen JE. 1977. Archaeological Approaches to the Present: models for Reconstructing the Past. New York: Academic Press.
  • Yoshida T, Ishikawa H, Yoshida N, Hisanaga Y. 2009. Analysis of masseter muscle oxygenation and mandibular movement during experimental gum chewing with different hardness. Acta Odontol. Scand 67:113–121. doi:10.1080/00016350802715806
  • Zilio L, Hammond H, Karampaglidis T, Sánchez-Romero L, Blasco R, Rivals F, Rufà A, Picin A, Chacón MG, Demuro M, et al. 2021. Examining Neanderthal and carnivore occupations of Teixoneres Cave (Moià, Barcelona, Spain) using archaeostratigraphic and intra-site spatial analysis. Sci Rep. 11:4339. doi:10.1038/s41598-021-83741-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.