Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 29, 2016 - Issue 3
413
Views
6
CrossRef citations to date
0
Altmetric
Articles

Rheological Property and Thermal Conductivity of Multi-walled Carbon Nano-tubes-dispersed Non-Newtonian Nano-fluids Based on an Aqueous Solution of Carboxymethyl Cellulose

, , , &
Pages 378-391 | Received 10 Jun 2014, Accepted 09 Dec 2014, Published online: 21 Feb 2016

References

  • S. U. S. Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles, ASME Fluids Eng. Div. (Pub.) FED, vol. 231, pp. 99–105, 1995.
  • S. K. Mohammadian, H. R. Seyf, and Y. Zhang, Performance Augmentation and Optimization of Aluminum Oxide-Water Nanofluid Flow in a Two-Fluid Microchannel Heat Exchanger, J. Heat Transf, vol. 136, pp. 021701, 2014.
  • Y. He, S. Vasiraju, and L. Que, Hybrid Nanomaterial-Based Nanofluids for Micropower Generation, RSC Advances, vol. 4, pp. 2433–2439, 2014.
  • A. M. Hussein, K. V. Sharma, R. A. Bakar, and K. Kadirgama, A Review of Forced Convection Heat Transfer Enhancement and Hydrodynamic Characteristics of a Nanofluid, Renew. Sust. Energy Rev, vol. 29, pp. 734–743, 2014.
  • M. Ghanbarpour, H. E. Bitaraf, and R. Khodabandeh, Thermal Properties and Rheological Behavior of Water Based Al2O3 Nanofluid as a Heat Transfer Fluid, Exp. Therm. Fluid Sci, vol. 53, pp. 227–235, 2014.
  • O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, and S. Wongwises, A Review of the Applications of Nanofluids in Solar Energy, Int. J. Heat Mass Transf, vol. 57, pp. 582–594, 2013.
  • O. Mahian, A. Kianifar, C. Kleinstreuer, M. A. Al-Nimr, I. Pop, A. Z. Sahin, and S. Wongwises, A Review of Entropy Generation in Nanofluid Flow, Int. J. Heat Mass Trans, vol. 65, pp. 514–532, 2013.
  • E. Nourafkan, G. Karimi, and J. Moradgholi, Experimental Study of Laminar Convective Heat Transfer and Pressure Drop of Cuprous Oxide/Water Nanofluid inside A Circular Tube, Exp. Heat Transf, vol. 28, pp. 58–68, 2015.
  • B. Mehrjou, S. Zeinali Heris, and K. Mohamadifard, Experimental Study of Cuo/Water Nanofluid Turbulent Convective Heat Transfer in Square Cross-Section Duct, Exp. Heat Transf, vol. 28, pp. 282–297, 2015.
  • M. Bahiraeia and S. M. Hosseinalipour, Particle Migration in Nanofluids Considering Thermophoresisand Its Effect on Convective Heat Transfer, Thermochim. Acta, vol. 574, pp. 47–54, 2013.
  • M. Bahiraei, A Comprehensive Review on Different Numerical Approaches for Simulation in Nanofluids: Traditional and Novel Techniques, J. Disp. Sci. Tech, vol. 35, pp. 984–996, 2014.
  • M. S. Mojarrad, A. Keshavarz, M. Ziabasharhagh, and M. M. Raznahan, Experimental Investigation on Heat Transfer Enhancement of Alumina/Water and Alumina/Water-Ethylene Glycol Nanofluids in Thermally Developing Laminar Flow, Exp. Therm. Fluid Sci, vol. 53, pp. 111–118, 2014.
  • C. J. Ho, W. C. Chen, and W. M. Yan, Correlations of Heat Transfer Effectiveness in a Minichannel Heat Sink with Water-Based Suspensions of Al2O3 Nanoparticles and/or MEPCM Particles, Int. J. Heat Mass Transf, vol. 69, pp. 293–299, 2014.
  • L. Gara and Q. Zou, Friction and Wear Characteristics of Oil-Based Zno Nanofluids, Tribology Transf, vol. 56, pp. 236–244, 2013.
  • O. Mahian, A. Kianifar, and S. Wongwises, Dispersion of Zno Nanoparticles in A Mixture of Ethylene Glycol–Water, Exploration of Temperature-Dependent Density, and Sensitivity Analysis, J. Clust. Sci, vol. 24, pp. 1103–1114, 2013.
  • T. Yiamsawas, O. Mahian, A. S. Dalkilic, S. Kaewnai, and S. Wongwises, Experimental Studies on the Viscosity of TiO2 and Al2O3 Nanoparticles Suspended in A Mixture of Ethylene Glycol and Water for High Temperature Applications, Appl. Energy, vol. 111, pp. 40–45, 2013.
  • M. H. Esfe, S. Saedodin, O. Mahian, and S. Wongwises, Heat Transfer Characteristics and Pressure Drop of COOH-Functionalized Dwcnts/Water Nanofluid in Turbulent Flow at Low Concentrations, Int. J. Heat Mass Transf, vol. 73, pp. 186–194, 2014.
  • P. K. Namburu, D. P. Kulkarni, D. Misra, and D. K. Das, Viscosity of Copper Oxide Nanoparticles Dispersed in Ethylene Glycol and Water Mixture, Exp. Therm. Fluid Sci, vol. 32, pp. 397–402, 2007.
  • H. S. Chen, Y. L. Ding, Y. R. He, and C. Q. Tan, Rheological Behaviour of Ethylene Glycol Based Titania Nanofluids, Chem. Phys. Lett, vol. 444, pp. 333–337, 2007.
  • P. Garg, J. L. Alvarado, C. Marsh, T. A. Carlson, D. A. Kessler, and K. Annamalai, An Experimental Study on the Effect of Ultrasonication on Viscosity and Heat Transfer Performance of Multi-Wall Carbon Nanotube-Based Aqueous Nanofluids, Int. J. Heat Mass Transf, vol. 52, pp. 5090–5101, 2009.
  • H. S. Chen, Y. L. Ding, and A. Lapkin, Rheological Behaviour of Nanofluids Containing Tube/Rod-Like Nanoparticles, Powder Technol, vol. 194, pp. 132–141, 2009.
  • R. M. Nabeel and J. Hemalatha, Viscosity Studies on Novel Copper Oxide-Coconut Oil Nanofluid, Exp. Therm. Fluid Sci, vol. 48, pp. 67–72, 2013.
  • M. Kole and T. K. Dey, Enhanced Thermophysical Properties of Copper Nanoparticles Dispersed in Gear Oil, Appl. Therm. Eng, vol. 56, pp. 45–53, 2013.
  • M. J. Pastoriza-Gallego, L. Lugo, J. L. Legido, and M. M. Piñeiro, Rheological Non-Newtonian Behaviour of Ethylene Glycol-Based Fe2O3 Nanofluids, Nanoscale Res. Lett, vol. 6, pp. 1–7, 2011.
  • F. Duan, T. F. Wong, and A. Crivoi, Dynamic Viscosity Measurement in Non-Newtonian Graphite Nanofluids, Nanoscale Res. Lett, vol. 7, pp. 1–15, 2012.
  • F. C. Li, J. C. Yang, W. W. Zhou, Y. R. He, Y. M. Huang, and B. C. Jiang, Experimental Study on the Characteristics of Thermal Conductivity and Shear Viscosity of Viscoelastic-Fluid-Based Nanofluids Containing Multiwalled Carbon Nanotubes, Thermochim. Acta, vol. 556, pp. 47–53, 2013.
  • J. C. Yang, F. C. Li, W. W. Zhou, Y. R. He, and B. C. Jiang, Experimental Investigation on the Thermal Conductivity and Shear Viscosity of Viscoelastic-Fluid-Based Nanofluids, Int. J. Heat Mass Transf, vol. 55, pp. 3160–3166, 2012.
  • M. Hojjat, S. G. Etemad, R. Bagheri, and J. Thibault, Rheological Characteristics of Non-Newtonian Nanofluids: Experimental Investigation, Int. Comm. Heat Mass Transf, vol. 38, pp. 144–148, 2011.
  • C. W. Pang, J. W. Lee, H. K. Hong, and Y. T. Kang, Heat Conduction Mechanism in Nanofluids, J. Mech. Sci. Tech, vol. 28, pp. 2925–2936, 2014.
  • A. Sobti and R. K. Wanchoo, Thermal Conductivity of Nanofluids, Mater. Sci. Forum, vol. 757, pp. 111–137, 2013.
  • P. Keblinski, R. Prasher, and J. Eapen, Thermal Conductance of Nanofluids: Is the Controversy Over? J. Nanopart. Res, vol. 10, pp. 1089–1097, 2008.
  • J. Buongiorno D. C. Venerus, N. Prabhat, T. McKrell, J. Townsend, et al., A Benchmark Study on the Thermal Conductivity of Nanofluids, J. Appl. Phys, vol. 106, pp. 094312, 2009.
  • N. Shalkevich, W. Escher, T. Burgi, B. Michel, L. Si-Ahmed, and D. Poulikakos, On the Thermal Conductivity of Gold Nanoparticle Colloids, Langmuir, vol. 26, pp. 663–670, 2010.
  • R. Sadri, G. Ahmadi, H. Togun, M. Dahari, S. N. Kazi, E. Sadeghinezhad, and N. Zubir, An Experimental Study on Thermal Conductivity and Viscosity of Nanofluids Containing Carbon Nanotubes, Nanoscale Res. Lett, vol. 9, pp. 151, 2014.
  • E. O. I. Ettefaghi, H. Ahmadi, A. Rashidi, A. Nouralishahi, and S. S. Mohtasebi, Preparation and Thermal Properties of Oil-Based Nanofluid from Multi-Walled Carbon Nanotubes and Engine Oil as Nano-Lubricant, Int. Comm. Heat Mass Transf, vol. 46, pp. 142–147, 2013.
  • R. Kamali, Y. Jalali, and A. R. Binesh, Investigation of Multiwall Carbon Nanotube-Based Nanofluid Advantages in Microchannel Heat Sinks, Micro Nano Lett, vol. 8, pp. 319–323, 2013.
  • N. J. Kim, S. S. Park, S. H. Lim, and W. Chun, A Study on the Characteristics of Carbon Nanofluids at the Room Temperature (25°C), Int. Comm. Heat Mass Trans, vol. 38, pp. 313–318, 2011.
  • S. M. Sohel Murshed and C. A. Nieto de Castro, Superior Thermal Features of Carbon Nanotubes-Based Nanofluids—A Review, Renew. Sust. Energy Rev, vol. 37, pp. 155–167, 2014.
  • S. S. Park and N. J. Kim, A Study on the Characteristics of Carbon Nanofluid for Heat Transfer Enhancement of Heat Pipe, Renew. Energy, vol. 65, pp. 123–129, 2014.
  • K. A. Abdelrahim and H. S. Ramaswamy, High Temperature/Pressure Rheology of Carboxymethyl Cellulose (CMC), Food Res. Int, vol. 28, pp. 285–290, 1995.
  • F. Ya¸ar, H. Toğrul, and N. Arslan, Flow Properties of Cellulose and Carboxymethyl Cellulose from Orange Peel, J. Food Eng, vol. 81, pp. 187–199, 2007.
  • V. Pilizota, D. Subaric, and T. Lovric, Rheological Properties of CMC Dispersions at Low Temperatures, Food Technol. Biotechnol, vol. 34, pp. 87–90, 1996.
  • C. T. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Mare, S. Boucher, and H. A. Mnsta, Viscosity Data for Al2O3–Water Nanofluid-Hysteresis: Is Heat Transfer Enhancement Using Nanofluids Reliable, J. Therm. Sci, vol. 47, pp. 103–111, 2008.
  • M. Kole and T. K. Dey, Effect of Aggregation on the Viscosity of Copper Oxide–Gear Oil Nanofluids, Int. J. Therm. Sci, vol. 50, pp. 1741–1747, 2011.
  • H. C. Brinkman, The Viscosity of Concentrated Suspensions and Solution, J. Chem. Phys, vol. 20, pp. 571–581, 1952.
  • A. Einstein, Investigations on the Theory of the Brownian Movement, Dover Publications, New York, 1956.
  • R. L. Hamilton and O. K. Crosser, Thermal Conductivity of Heterogeneous Two Component Systems, Indus. Eng. Chem. Fund, vol. 1, pp. 187–191, 1962.
  • L. F. Chen and H. Q. Xie, Surfactant-Free Nanofluids Containing Double-and Single-Walled Carbon Nanotubes Functionalized by a Wet-Mechanochemical Reaction, Thermochim Acta, vol. 497, pp. 67–71, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.