Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 30, 2017 - Issue 1
216
Views
5
CrossRef citations to date
0
Altmetric
Articles

Carbon nanotube-epoxy composites: The role of acid treatment in thermal and electrical conductivity

, , , , , & show all
Pages 66-76 | Received 29 Dec 2014, Accepted 24 Feb 2016, Published online: 20 Sep 2016

References

  • K. Shahil and A. Balandin, Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials, Solid State Commun., vol. 152, pp. 1331–1340, 2012.
  • M. Khairul Alam and B. Maruyama, Thermal Conductivity of Graphitic Carbon Foams, Exp. Heat Transf., vol. 17, pp. 227–241, 2004.
  • P. Vizureanu, N. Cimpoesu, V. Radu, and M. Agop, Investigations on Thermal Conductivity of Carbon Nanotubes Reinforced Composites, Exp. Heat Transf., vol. 28, pp. 37–57, 2013.
  • W. Cui, F. Du, J. Zhao, W. Zhang, Y. Yang, X. Xie, and Y. -W. Mai, Improving Thermal Conductivity while Retaining High Electrical Resistivity of Epoxy Composites by Incorporating Silica-Coated Multi-Walled Carbon Nanotubes, Carbon, vol. 49, pp. 495–500, 2011.
  • F. Aviles, J. V. Cauich-Rodriguez, L. Moo-Tah, A. May-Pat, and R. Vargas-Coronado, Evaluation of Mild Acid Oxidation Treatments for MWCBT Functionalization, Carbon, vol. 47, pp. 2970–2975, 2009.
  • J. Lehman, M. Torrones, E. Mansfiled, K. Hurst, and V. Meunier, Evaluating the Characteristics of Multiwall Carbon Nanotubes, Carbon, vol. 49, pp. 2581–2602, 2011.
  • J.-Y. Kwon and H.-D. Kim, Preparation and Properties of Acid-Treated Multiwalled Carbon Nanotube/Waterborne Polyurethane Nanocomposites, J. Appl. Polym. Sci., vol. 96, pp. 595–604, 2005.
  • Y. R. Shin, I. Y. Jeon, and J. B. Baek, Stability of Multi-Walled Carbon Nanotubes in Commonly Used Acidic Media, Carbon, vol. 50, pp. 1465–1476, 2012.
  • J. L. Bantignies, J. L. Sauvajol, A. Rahmani, and E. Flahaut, Infrared-Active Phonons in Carbon Nanotubes, Phys. Rev. B, vol. 74, 195425, pp. 1–5, 2006.
  • K. Sbai, A. Rahmani, H. Chadli, J. L. Bantignies, P. Hermet, and J. L. Sauvajol, Infrared Spectroscopy of Single-Walled Carbon Nanotubes, J. Phys. Chem. B, vol. 110, pp. 12388–12393, 2006.
  • C. Moreno-Castilla, M. V. López-Ramón, and F. Carrasco-Marín, Changes in Surface Chemistry of Activated Carbons by Wet Oxidation, Carbon, vol. 34, pp. 1995–2001, 2000.
  • B. Vigolo, C. Hérold, J. F. Marêché, J. Ghanbaja, M. Gulas, F. Le Normand, R. Almairac, L. Alvarez, and J. L. Bantignies, A Comprehensive Scenario for Commonly Used Purification Procedures of Arc-Discharge as-Produced Single-Walled Carbon Nanotubes, Carbon, vol. 48, pp. 949–963, 2012.
  • T. Shimada, T. Sugai, C. Fantini, M. Souza, L. G. Cançado, A. Jorio, M. A. Pimenta, R. Saito, A. Grüneis, G. Dresselhaus, M. S. Dresselhaus, Y. Ohno Mizutani, and H. Shinohara, Origin of the 2450 cm− 1 Raman Bands in HOPG, Single-Wall and Double-Wall Carbon Nanotubes, Carbon, vol. 43, pp. 1049–1054, 2005.
  • R. Saito, A. Grüneis, G. G. Samsonidze, V. W. Brar, G. Dresselhaus, M. S. Dresselhaus, A. Jorio, L. G. Cançado, C. Fantini, M. A. Pimenta, A. G. Souza Filho, New J. Phys., vol. 5, pp. 157.1–157.15, 2003.
  • A. Rahmani, J. L. Sauvajol, S. Rols, and C. Benoit, Non Resonant Raman Spectrum in Infinite and Finite Single-Wall Carbon Nanotubes, Phys. Rev. B, vol. 66, 125404, pp. 1–9, 2002.
  • R. A. Dileo, B. J. Landi, and R. P. Raffaelle, Application of the G′/D Raman Ratio for Purity Assessment of Multiwalled Carbon Nanotubes. Materials Research Society, Spring Mettings, Proceedings, San Francisco, CA, 2007.
  • V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, and C. Galiotis, Chemical Oxidation of Multiwalled Carbon Nanotubes, Carbon, vol. 46, pp. 833–840, 2008.
  • K. R. Moonoosawmy and P. Kruse, Ambiguity in the Characterization of Chemically Modified Single–Walled Carbon Nanotubes: A Raman and Ultraviolet-Visible-Near-Infrared Study, J. Phys. Chem. C., vol. 113, pp. 113–140, 2009.
  • R. A. Dileo, B. J. Landi, and R. P. Raffaelle, Purity Assessment of Multiwalled Carbon Nanotubes by Raman Spectroscopy, J. Appl. Phys., vol. 101, 064307, pp. 32–36, 2007.
  • K. A. Wepasnick, B. A. Smith, K. E. Schrote, H. K. Wilson, S. R. Diegelmann, and D. H. Fairbrother, Surface and Structural Characterization of Multi-Walled Carbon Nanotubes Following Different Oxidative Treatments, Carbon, vol. 29, pp. 24–36, 2011.
  • S. Cambré and W. Wenseleers, Separation and Diameter-Sorting of Empty (End-Capped) and Water-Filled (Open) Carbon Nanotubes by Density Gradient Ultracentrifugation, Angew. Chem. Int. Ed., vol. 50, pp. 2764–2786, 2011.
  • A. Moisala, A. Q. Li, I. A. Kinloch, and A. H. Windle, Thermal and Electrical Conductivity of Single- and Multi-Walled Carbon Nanotube-Epoxy Composites, Compos. Sci. Technol., vol. 66, pp. 1285–1288, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.