Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 30, 2017 - Issue 2
511
Views
23
CrossRef citations to date
0
Altmetric
Articles

Preparation, characterization, and performance study of beeswax/expanded graphite composite as thermal storage material

, &
Pages 139-150 | Received 05 Jan 2016, Accepted 27 Apr 2016, Published online: 30 Sep 2016

References

  • S. Wang, P. Qin, X. Fang, Z. Zhang, S. Wang, and X. Liu, A Novel Sebacic Acid/Expanded Graphite Composite Phase Change Material for Solar Thermal Medium-Temperature Applications, Solar Energy, vol. 99, pp. 283–290, 2014.
  • B. He and F. Setterwall, Technical Grade Paraffin Waxes as Phase Change Materials for Cool Thermal Storage and Cool Storage Systems Capital Cost Estimation, Energy Convers. Manage., vol. 43, pp. 1709–1723, 2002.
  • M. Kenisarin and K. Mahkamov, Solar Energy Storage Using Phase Change Materials, Renew. Sustain. Energy Rev., vol. 11, pp. 1913–1965, 2007.
  • A. Shukla, D. Buddhi, and R. L. Sawhney, Solar Water Heaters with Phase Change Material Thermal Energy Storage Medium: A Review, Renew. Sustain. Energy Rev., vol. 13, pp. 2119–2125, 2009.
  • B. Zalba, B. M. J. Marin, L. F. Cabeza, and H. Mehling, Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications, Appl. Thermal Eng., vol. 23, pp. 251–283, 2003.
  • Z. Sun, Y. Zhang, S. Zheng, Y. Park, and R. L. Frost, Preparation and Thermal Energy Storage Properties of Paraffin/Calcined Diatomite Composites as Form-Stable Phase Change Materials, Thermochim. Acta, vol. 558, pp. 16–21, 2013.
  • Z. Zhang, N. Zhang, J. Peng, X. Fang, X. Gao, and Y. Fang, Preparation and Thermal Energy Storage Properties of paraffin/Expanded Graphite Composite Phase Change Material, Appl. Energy, vol. 91, pp. 426–431, 2012.
  • A. Sariand and A. Karaipekli, Thermal Conductivity and Latent Heat Thermal Energy Storage Characteristics of Paraffin/Expanded Graphite Composite as Phase Change Material, Appl. Therm. Eng., vol. 27, pp. 1271–1277, 2007.
  • M. K. Rathod and J. Banerjee, Experimental Investigations on latent Heat Storage Unit Using Paraffin Wax as Phase Change Material, Exp. Heat Transf., vol. 27, pp. 40–55, 2014.
  • F. Trinquet, L. Karim, G. Lefebvre, and L. Royon, Mechanical Properties and Melting Heat Transfer Characteristics of Shape-Stabilized Paraffin Slurry, Exp. Heat Transf., vol. 27, pp. 1–13, 2014.
  • A. Sharma, S. D. Sharma, and D. Buddhi, Accelerated Thermal Cycle Test of Acetamide, Stearic Acid and Paraffin Wax for Solar Thermal Latent Heat Storage Applications, Energy Convers. Manage., vol. 43, pp. 1923–1930, 2002.
  • A. Sari, Form-Stable Paraffin/High Density Polyethylene Composites as Solid–Liquid Phase Change Material for Thermal Energy Storage: Preparation and Thermal Properties, Energy Convers. Manage., vol. 45, pp. 2033–2042, 2004.
  • I. Al-Hinti, A. Al-Ghandoor, A. Maaly, I. A. Naqeera, Z. Al-Khateeb, and O. Al-Sheikh, Experimental Investigation on the Use of Water-Phase Change Material Storage in Conventional Solar Water Heating Systems, Energy Convers. Manage., vol. 51, pp. 1735–1740, 2014.
  • S. O. Enibe, Performance of a Natural Circulation Solar Air Heating System with Phase Change Material Energy Storage, Renew. Energy, vol. 27, pp. 69–86, 2002.
  • A. Kurkulu, A. A. Zmerzi, and S. Bilgin, Thermal Performance of a Water-Phase Change Material Solar Collector, Renew. Energy, vol. 26, pp. 391–399, 2002.
  • Z. Gu, H. Liu, and Y. Li, Thermal Energy Recovery of air Conditioning System and Heat Recovery System Calculation and Phase Change Materials Development, Appl. Therm. Eng., vol. 24, pp. 2511–2526, 2004.
  • N. Nallusamy, S. Sampath, and R. Velraj, Experimental Investigation on a Combined Sensible and Latent Heat Storage System Integrated with Constant/Varying (Solar) Heat Sources, Renew. Energy, vol. 32, pp. 1206–1227, 2007.
  • M. Mazman, L. F. Cabeza, H. Mehling, M. Nogues, H. Evliya, and H. A. Paksoy, Utilization of Phase Change Materials in Solar Domestic Hot Water Systems, Renew. Energy, vol. 34, pp. 1639–1643, 2009.
  • A. Sari and K. Kaygusuz, Thermal Performance of Myristic Acid as a Phase Change Material for Energy Storage Application, Renew. Energy, vol. 24, pp. 303–317, 2001.
  • D. Rozanna, T. G. Chuah, A. Salmiah, T. S. Y. Choong, and M. Sari, Fatty Acids as Phase Change Materials (PCMs) for Thermal Energy Storage: A Review, Int. J. Green Energy, vol. 1, pp. 495–513, 2005.
  • A. S. K. Kaygusuz, Thermal Energy Storage System Using Some Fatty Acids as Latent Heat Energy Storage Materials, Energy Source, vol. 23, pp. 275–285, 2001.
  • M. E. Hossain, M. I. Khan, C. Ketata, and M. R. Islam, Comparative Pathway Analysis of Paraffin Wax and Beeswax for Industrial Applications, Int. J. Char. Develop. Novel Mat., vol. 1, pp. 1–13, 2010.
  • B. Zimnicka and A. Hacura, An Investigation of Molecular Structure and Dynamics of Crude Beeswax by Vibrational Spectroscopy, Pol. J. Environ. Stud., vol. 15, pp. 112–114, 2006.
  • G. Baran and A. Sari, Phase Change and Heat Transfer Characteristics of a Eutectic Mixture of Palmitic and Stearic Acids as PCM in a Latent Heat Storage System, Energy Convers. Manage., vol. 44, pp. 3227–3246, 2003.
  • K. Tuncbilek, A. Sari, S. Tarhan, G. Ergunes, and K. Kaygusuz, Lauric and Palmitic Acids Eutectic Mixture as Latent Heat Storage Material for Low Temperature Heating Applications, Energy, vol. 30, pp. 677–692, 2005.
  • X. Xiao, P. Zhang, and M. Li, Preparation and Thermal Characterization of Paraffin/Metal Foam Composite Phase Change Material, Appl. Energy, vol. 112, pp. 1357–1366, 2013.
  • M. A. Jackson and F. J. Eller, Isolation of Long-Chain Aliphatic Alcohols from Beeswax Using Lipase-Catalyzed Methanolysis in Supercritical Carbon Dioxide, J. Supercrit. Fluids, vol. 37, pp. 173–177, 2006.
  • R. Aichholz and E. Lorbee, Investigation of Combwax of Honeybees with High-Temperature Gas Chromatography and High-Temperature Gas Chromatography-Chemical Ionization Mass Spectrometry: I. High-Temperature Gas Chromatography, J. Chromatogr. A, vol. 855, pp. 601–615, 1999.
  • R. Aichholz and E. Lorbeer, Investigation of Combwax of Honeybees with High-Temperature Gas Chromatography and High-Temperature Gas Chromatography Chemical Ionization Mass Spectrometry: II: High-Temperature Gas Chromatography Chemical Ionization Mass Spectrometry, J. Chromatogr. A, vol. 883, pp. 75–88, 2000.
  • S. Bogdanov, S. Bogdanov, The Beeswax Book, Ch. 1, Beeswax: Properties, composition and control, pp. 1–18. Product Science, Sweden, 2009.
  • R. Buchwald, M. D. Breed, and A. R. Greenberg, The Thermal Properties of Beeswaxes: Unexpected Findings, J. Exp. Biol., vol. 211, pp. 121–127, 2008.
  • S. Kim and L. T. Drzal, High Latent Heat Storage and High Thermal Conductive Phase Change Materials Using Exfoliated Graphite Nanoplatelets, Sol. Energ. Mater. Solar Cells, vol. 93, pp. 136–142, 2009.
  • L. Xia, P. Zhang, and R. Z. Wang, Preparation and Thermal Characterization of Expanded Graphite/Paraffin Composite Phase Change Material, Carbon, vol. 48, pp. 2538–2548, 2010.
  • X. Py, R. Olives, and S. Mauran, Paraffin/Porous-Graphite-Matrix Composite as a High and Constant Power Thermal Storage Material, Int. J. Heat Mass Transf., vol. 44, pp. 2727–2737, 2001.
  • A. Castell, C. Sola, M. Medrano, J. Roca, L. F. Cabeza, and D. Garca, Natural Convection Heat Transfer Coefficients in Phase Change Material (PCM) Modules with External Vertical Fins, Appl. Therm. Eng., vol. 28, pp. 1676–1686, 2008.
  • V. Shatikian, G. Ziskind, and R. Letan, Numerical Investigation of a PCM-Based Heat Sink with Internal Fins, Int. J. Heat Mass Transf., vol. 48, pp. 3689–3706, 2005.
  • A. Yataganbaba and I. Kurtbas, Effect of Heating Position on Thermal Energy Storage in Cavity with/Without Open-Cell Metallic Foams, Exp. Heat Transfer, vol. 29, pp. 355–377, 2016.
  • R. Baby and C. Balaji, Network-Based Optimization of Thermal Performance of Phase Change Material-Based Finned Heat Sink—An Experimental Study, Exp. Heat Transf., vol. 26, pp. 431–452, 2013.
  • X. Yang, Y. Yuan, N. Zhang, X. Cao, and C. Liu, Preparation and Properties of Myristic-Palmitic-Stearic Acid/Expanded Graphite Composites as Phase Change Materials for Energy Storage, Solar Energy, vol. 99, pp. 259–266, 2014.
  • Z. Zhang, G. Shi, S. Wang, X. Fang, and X. Liu, Thermal energy Storage Cement Mortar Containing n-Octadecane/Expanded Graphite Composite Phase Change Material, Renew. Energy, vol. 50, pp. 670–675, 2013.
  • D. Mei, B. Zhang, R. Liu, Y. Zhang, and J. Liu, Preparation of Capric Acid/Halloysite Nanotube Composite as Form-Stable Phase Change Material for Thermal Energy Storage, Sol. Energy Mater. Solar Cells, vol. 95, pp. 2772–2777, 2011.
  • A. Mills, M. Farid, J. R. Selman, and S. Al-Hallaj, Thermal Conductivity Enhancement of Phase Change Materials Using a Graphite Matrix, Appl. Therm. Eng., vol. 26, pp. 1652–1661, 2006.
  • S. G. Jeong, J. Jeon, J. H. Lee, and S. Kim, Optimal Preparation of PCM/Diatomite Composites for Enhancing Thermal Properties, Int. J. Heat Mass Transf., vol. 62, pp. 711–717, 2013.
  • P. Zhang, X. Xiao, and Z. W. Ma, A Review of the Composite Phase Change Materials: Fabrication, Characterization, Mathematical Modeling and Application to Performance Enhancement, Appl. Energy, vol. 165, pp. 472–510, 2016.
  • J. L. Zeng, J. Gan, F. R. Zhu, S. B. Yu, Z. L. Xiao, W. P. Yan, L. Zhu, Z. Q. Liu, L. X. Sun, and Z. Cao, Tetradecanol/Expanded Graphite Composite Form-Stable Phase Change Material for Thermal Energy Storage, Solar Energy Mater. Solar Cells, vol. 127, pp. 122–128, 2014.
  • X. Xiao, P. Zhang, and M. Li, Experimental and Numerical Study of Heat Transfer Performance of Nitrate/Expanded Graphite Composite PCM for Solar Energy Storage, Energy Convers. Manage., vol. 105, pp. 272–284, 2015.
  • X. Xiao, P. Zhang, and M. Li, Effective Thermal Conductivity of Open-Cell Metal Foams Impregnated with Pure Paraffin for Latent Heat Storage, Int. J. Therm. Sci., vol. 81, pp. 94–105, 2014.
  • S. Patel, D. R. Nelson, and A. G. Gibbs, Chemical and Physical Analyses of Wax Ester Properties, J. Insect Sci., vol. 1, pp. 4–7, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.