Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 30, 2017 - Issue 3
512
Views
62
CrossRef citations to date
0
Altmetric
Articles

Investigation of thermal conductivity and rheological properties of vegetable oil based hybrid nanofluids containing Cu–Zn hybrid nanoparticles

, &
Pages 205-217 | Received 08 Apr 2016, Accepted 26 Aug 2016, Published online: 01 Dec 2016

References

  • S. A. Lawal and I. A. Choudhury, Application of Vegetable Oil-Based Metalworking Fluids in Machining Ferrous Metals—A Review, Int. J. Mach. Tools Manuf., 2011. doi:10.1016/j.ijmachtools.2011.09.003.
  • H. Masuda, A. Ebata, K. Teramat, and N. Hishinuma, Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of γ-Al2O3, SiO3 and TiO2 Ultra-Fine Particles), Netsu Bussei (Japan), vol. 4, pp. 227–233, 1993.
  • S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, J. Heat Transfer, vol. 121, pp. 280–289, 1999.
  • Y. Xuan and Q. Li, Heat Transfer Enhancement of Nanofluids, Int. J. Heat Fluid Flow, vol. 21, pp. 58–64, 2000.
  • S. C. Tzeng, C. W. Lin, and K. D. Hung, Heat Transfer Enhancement of Nanofluids in Rotary Blade Coupling of Four Wheel Drive Vehicles, Acta Mech., vol. 179, pp. 11–23, 2005.
  • Y. Xuan and W. Roetzel, Conception for Heat Transfer Correlation of Nanofluid, Int. J. Heat Mass Transfer, vol. 43, pp. 3701–3707, 2000.
  • Q. Li and Y. Xuan, Experimental Investigation of Transport Properties of Nanofluids In Wang, B.-X. (Ed.), Heat Transfer Science Technology, Higher Education Press, pp. 757–762, 2000.
  • S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions, Appl. Phys. Lett., vol. 79, pp. 2252–2254, 2001.
  • Y. Ding, H. Alias, D. Wen, and R. A. Williams, Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids), Int. J. Heat Mass Transfer, vol. 49, pp. 240–250, 2006.
  • A. Amrollahi, A. M. Rashidi, M. Emami Meibodi, and K. Kashefi, Conduction Heat Transfer Characteristics and Dispersion Behaviour of Carbon Nanofluids as a Function of Different Parameters, J. Exp. Nanosci., vol. 4, pp. 347–363, 2009.
  • S. Suresh, K. P. Venkitaraj, P. Selvakumar, and M. Chandrasekar, Synthesis of Al2O3–Cu/Water Hybrid Nanofluids Using Two Step Method and its Thermophysical Properties, Colloids Surf., A, vol. 388, pp. 41–48, 2011.
  • M. Baghbanzadeh, A. Rashidi, D. Rashtchian, R. Lotfi, and A. Amrollahi, Synthesis of Spherical Silica/Multiwall Carbon Nanotubes Hybrid Nanostructures and Investigation of Thermal Conductivity of Related Nanofluids, Thermochim. Acta, vol. 549, pp. 87–94, 2012.
  • D. Madhesh, R. Parameshwaran, and S. Kalaiselvam, Experimental Investigation on Convective Heat Transfer and Rheological Characteristics of Cu–TiO2 Hybrid Nanofluid, Exp. Therm Fluid Sci., vol. 52, pp. 104–115, 2014.
  • L. Syam Sundar, M. K. Singh, and A. C. M. Sousa, Enhanced Heat Transfer and Friction Factor of MWCNT–Fe3O4/Water Hybrid Nanofluids, Int. Commun. Heat Mass Transfer, vol. 52, pp. 73–83, 2014.
  • M. Baghbanzadeh, A. Rashidi, and A. H. Soleimanisalim, Investigating the Rheological Properties of Nanofluids of Water/Hybrid Nanostructure of Spherical Silica/MWCNT, Thermochim. Acta, vol. 578, pp. 53–58, 2014.
  • A. Tadjarodi and F. Zabihi, Thermal Conductivity Studies of Novel Nanofluids Based on Metallic Silver Decorated Mesoporous Silica Nanoparticles, Mater. Res. Bull., vol. 48, pp. 4150–4156, 2013.
  • M. S. Kumar, V. Vasu, and A. Venu Gopal, Thermal Conductivity and Viscosity of Vegetable Oil–Based Cu, Zn, and Cu–Zn Hybrid Nanofluids, J. Test. Eval., vol. 44, pp. 1–7, 2015. 10.1520/JTE20140286. ISSN 0090-3973.
  • M. S. Kumaret al., Thermal Conductivity and Rheological Studies for Cu–Zn Hybrid Nanofluids With Various Basefluids, J. Taiwan Inst. of Chem. Eng., 2016. doi:10.1016/j.jtice.2016.05.033.
  • J. Buongiorno et al., A Benchmark Study on the Thermal Conductivity of Nanofluids, J. Appl. Phys., vol. 106, pp. 094312, 2009.
  • ASTM D 5334-00, Standard Test Methods for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure. vol. 04.08, ASTM, West Conshocken, PA, 2000.
  • IEEE STD 442, IEEE Guide for Thermal Resistivity Measurements, The Institute of Electrical and Electronics Engineers, Inc., New York, NY, 1981.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.