Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 30, 2017 - Issue 3
171
Views
7
CrossRef citations to date
0
Altmetric
Articles

Heat transfer enhancement by combination of serpentine curves and nanofluid flow in microtube

, , &
Pages 235-252 | Received 28 May 2016, Accepted 26 Aug 2016, Published online: 01 Dec 2016

References

  • A. E. Bergles, Handbook of Heat Transfer, 3rd ed., McGraw-Hill, New York, 1998.
  • B. H. Salman, H. A. Mohammed, K. M. Munisamy, and A. S. Kherbeet, Characteristics of Heat Transfer and Fluid Flow in Microtube and Microchannel Using Conventional Fluids and Nanofluids: A Review, Renew. Sustain. Energy Rev., vol. 28, pp. 848–880, 2013.
  • Z. Liu, C. Zhang, Y. Huo, and X. Zhao, Flow and Heat Transfer in Rough Micro Steel Tubes, Exp. Heat Transf., vol. 20, pp. 289–306, 2007.
  • L. Zhigang, G. Ning, Z. Chengwu, and Z. Xiaobao, Experimental Study on Flow and Heat Transfer in a 19.6-μm Microtube, Exp. Heat Transf., vol. 22, pp. 178–197, 2009.
  • G. L. Morini, Y. Yang, and M. Lorenzini, Experimental Analysis of Gas Micro-Convection Through Commercial Microtubes, Exp. Heat Transf., vol. 25, pp. 151–171, 2012.
  • D. Lelea and C. Nisulescu, The Micro-Tube Heat Transfer and Fluid Flow of Water Based Al2O3 Nanofluid with Viscous Dissipation, Int. Comm. Heat Mass Transf., vol. 38, pp. 704–710, 2011.
  • B. H. Salman, H. A. Mohammed, and A. S. Kherbeet, Heat Transfer Enhancement of Nanofluids Flow in Microtube with Constant Heat Flux, Int. Comm. Heat Mass Transf., vol. 39, pp. 1195–1204, 2012.
  • M. Khoshvaght-Aliabadi, A. Zamzamian, and F. Hormozi, Wavy Channel and Different Nanofluids Effects on Performance of Plate-Fin Heat Exchangers, J. Thermophys. Heat Transf., vol. 28, pp. 474–484, 2014.
  • A. A. Minea, Effect of Microtube Length on Heat Transfer Enhancement of an Water/Al2O3 Nanofluid at High Reynolds Numbers, Int. J. Heat Mass Transf., vol. 62, pp. 22–30, 2013.
  • B. H. Salman, H. A. Mohammed, and A. S. Kherbeet, Numerical and Experimental Investigation of Heat Transfer Enhancement in a Microtube Using Nanofluids, Int. Comm. Heat Mass Transf., vol. 59, pp. 88–100, 2014.
  • D. Lelea and I. Laza, The Water Based Al2O3 Nanofluid Flow and Heat Transfer in Tangential Microtube Heat Sink with Multiple Inlets, Int. J. Heat Mass Transf., vol. 69, pp. 264–275, 2014.
  • D. Lelea and I. Laza, The Particle Thermal Conductivity Influence of Nanofluids on Thermal Performance of the Microtubes, Int. Comm. Heat Mass Transf., vol. 59, pp. 61–67, 2014.
  • A. Malvandi and D. D. Ganji, Magnetohydrodynamic Mixed Convective Flow of Al2O3–Water Nanofluid Inside a Vertical Microtube, J. Magnetism Magnet. Mater., vol. 369, pp. 132–141, 2014.
  • M. Karimzadehkhouei, S. E. Yalcin, K. Şendur, M. P. Mengüç, and A. Ko¸ar, Pressure Drop and Heat Transfer Characteristics of Nanofluids in Horizontal Microtubes Under Thermally Developing Flow Conditions, Exp. Thermal Fluid Sci., vol. 67, pp. 37–47, 2015.
  • M. Khoshvaght-Aliabadi, S. Pazdar, and O. Sartipzadeh, Experimental Investigation of Water Based Nanofluid Containing Copper Nanoparticles Across Helical Microtubes, Int. Comm. Heat Mass Transf., vol. 70, pp. 84–92, 2016.
  • M. Khoshvaght-Aliabadi, M. Tavasoli, and F. Hormozi, Comparative Analysis on Thermal-Hydraulic Performance of Curved Tubes: Different Geometrical Parameters and Working Fluids, Energy, vol. 91, pp. 588–600, 2015.
  • Payamavaran Nanotechnology Fardanegar (PNF) Nano Engineering & Manufacturing Co, Iran. www.pnf-co.com.
  • D. Zhu, X. Li, N. Wang, X. Wang, J. Gao, and H. Li, Dispersion Behavior and Thermal Conductivity Characteristics of Al2O3–H2O Nanofluids, Current Appl. Phys., vol. 9, pp. 131–139, 2009.
  • M. Khoshvaght-Aliabadi, F. Hormozi, and A. Zamzamian, Experimental Analysis of Thermal–Hydraulic Performance of Copper–Water Nanofluid Flow in Different Plate-Fin Channels, Exper. Thermal Fluid Sci., vol. 52, pp. 248–258, 2014.
  • H. W. Coleman and W. G. Steele, Experimentation, Validation, and Uncertainty Analysis for Engineers, John Wiley & Sons, New York, 2009.
  • F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, 2007.
  • C. Y. Yang and T. Y. Lin, Heat Transfer Characteristics of Water Flow in Microtubes, Exp. Thermal Fluid Sci., vol. 32, pp. 432–439, 2007.
  • C. Y. Yang, J. C. Wu, H. T. Chien, and R. Lu, Friction Characteristics of Water, R-134a, and Air in Small Tubes, Microscale Thermophys. Eng., vol. 7, pp. 335–348, 2003.
  • M. Rakhsha, F. Akbaridoust, A. Abbassi, and S. A. Majid, Experimental and Numerical Investigations of Turbulent Forced Convection Flow of Nano-Fluid in Helical Coiled Tubes at Constant Surface Temperature, Powder Tech., vol. 283, pp. 178–189, 2015.
  • D. Wen and Y. Din, Experimental Investigation Into Convective Heat Transfer of Nanofluid at the Entrance Region Under Laminar Flow Conditions, Int. J. Heat Mass Transf., vol. 47, pp. 5181–5188, 2004.
  • H. Chen, W. Yang, Y. He, Y. Ding, L. Zhang, C. Tan, A. A. Lapkin, and D. V. Bavykin, Heat Transfer Behaviour of Aqueous Suspensions Of Titanate Nanofluids, Powder Tech., vol. 183, pp. 63–72, 2008.
  • A. Abbasian Arani and J. Amani, Experimental Investigation of Diameter Effect on Heat Transfer Performance and Pressure Drop of TiO2-Water Nanofluid, Exp. Thermal Fluid Sci., vol. 44, pp. 520–533, 2013.
  • K. B. Anoop, T. Sundararajan, and S. K. Das, Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region, Int. J. Heat Mass Transf., vol. 52, pp. 2189–2195, 2009.
  • B. Farajollahi, S. G. Etemad, and M. Hojjat, Heat Transfer of Nanofluids in a Shell and Tube Heat Exchanger, Int. J. Heat Mass Transf., vol. 53, pp. 12–17, 2010.
  • B. Pak and Y. I. Cho, Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particle, Exp. Heat Transf., vol. 11, pp. 151–170, 1998.
  • Y. Xuan and Q. Li, Investigation on Convective Heat Transfer and Flow Features of Nanofluids, J. Heat Transf., vol. 125, pp. 151–155, 2003.
  • S. M. Fotukian and M. N. Esfahany, Experimental Study of Turbulent Convective Heat Transfer and Pressure Drop of Dilute CuO/Water Nanofluid Inside a Circular Tube, Int. Comm. Heat Mass Transf., vol. 37, pp. 214–219, 2010.
  • S. Eiamsa-ard, C. Thianpong, and P. Eiamsa-ard, Turbulent Heat Transfer Enhancement by Counter/Co-Swirling Flow in a Tube Fitted with Twin Twisted Tapes, Exp. Thermal Fluid Sci., vol. 34, pp. 53–62, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.