Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 30, 2017 - Issue 4
477
Views
17
CrossRef citations to date
0
Altmetric
Articles

Critical heat flux enhancement of pool boiling using a porous nanostructured coating

&
Pages 316-327 | Received 18 Jul 2016, Accepted 07 Oct 2016, Published online: 10 Feb 2017

References

  • S. G. Kandlikar, Handbook of Phase Change: Boiling and Condensation, New York-Philadelphia, Taylor & Francis, 1999.
  • M. Jakob and W. Fritz, Versuche über den Verdampfungsvorgang, Forschung im Ingenieurwesen, vol. 2, pp. 435–447, Forschung im Ingenieurwesen, 1931.
  • R. Gaertner, Effect of Heater Surface Chemistry on the Level of Burnout Heat Flux in Pool Boiling, Technical Information Series, New York: General Electric Research Laboratory, Schenectady, 1963.
  • S.-P. Liaw and V. Dhir, Effect of Surface Wettability on Transition Boiling Heat Transfer From a Vertical Surface, Proceedings of the 8th International Heat Transfer Conference, San Francisco, California, USA, pp. 2031–2036, 1986.
  • S. G. Liter and M. Kaviany, Pool-boiling CHF Enhancement by Modulated Porous-Layer Coating: Theory and Experiment, Int. J. Heat Mass Transf., vol. 44, pp. 4287–4311, 2001.
  • H. S. Ahn, N. Sinha, M. Zhang, D. Banerjee, S. Fang, and R. H. Baughman, Pool Boiling Experiments on Multiwalled Carbon Nanotube (MWCNT) Forests, J. Heat Transf., vol. 128, pp. 1335–1342, 2006.
  • C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. Peterson, Nanostructured Copper Interfaces for Enhanced Boiling, Small, vol. 4, pp. 1084–1088, 2008.
  • T. J. Hendricks, S. Krishnan, C. Choi, C.-H. Chang, and B. Paul, Enhancement of Pool-boiling Heat Transfer Using Nanostructured Surfaces on Aluminum and Copper, Int. J. Heat Mass Transf., vol. 53, pp. 3357–3365, 2010.
  • H. S. Ahn, C. Lee, J. Kim, and M. H. Kim, The Effect of Capillary Wicking Action of Micro/Nano Structures on Pool Boiling Critical Heat Flux, Int. J. Heat Mass Transf., vol. 55, pp. 89–92, 2012.
  • B. J. Zhang and K. J. Kim, Effect of Liquid Uptake on Critical Heat Flux Utilizing a Three Dimensional, Interconnected Alumina Nano Porous Surfaces, Appl. Phys. Lett., vol. 101, pp. 054104, 2012.
  • S. R. Chowdhury and R. Winterton, Surface Effects in Pool Boiling, Int. J. Heat Mass Transf., vol. 28, pp. 1881–1889, 1985.
  • C. Corty and A. S. Foust, Surface Variables in Nucleate Boiling, New York: American Institute of Chemical Engineers, 1953.
  • S. Vemuri and K. J. Kim, Pool Boiling of Saturated FC-72 on Nano-porous Surface, Int. Commun. Heat Mass Transf., vol. 32, pp. 27–31, 2005.
  • C. Y. Lee, M. M. H. Bhuiya, and K. J. Kim, Pool Boiling Heat Transfer With Nano-porous Surface, Int. J. Heat Mass Transf., vol. 53, pp. 4274–4279, 2010.
  • B. J. Zhang, K. J. Kim, and H. Yoon, Enhanced Heat Transfer Performance of Alumina Sponge-like Nano-porous Structures Through Surface Wettability Control in Nucleate Pool Boiling, Int. J. Heat Mass Transf., vol. 55, pp. 7487–7498, 2012.
  • D. Saeidi and A. A. Alemrajabi, Experimental Investigation of Pool Boiling Heat Transfer and Critical Heat Flux of Nanostructured Surfaces, Int. J. Heat Mass Transf., vol. 60, pp. 440–449, 2013.
  • D. E. Kim, D. I. Yu, D. W. Jerng, M. H. Kim, and H. S. Ahn, Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces, Exp. Therm. Fluid Sci., vol. 66, pp. 173–196, 2015.
  • H. O’Hanley, C. Coyle, J. Buongiorno, T. McKrell, L.-W. Hu, M. Rubner, and R. Cohen, Separate Effects of Surface Roughness, Wettability, and Porosity on the Boiling Critical Heat Flux, Appl. Phys. Lett., vol. 103, pp. 024102, 2013.
  • C. Y. Lee, T. H. Chun, and W. Kee In, Critical Heat Flux of Oxidized Zircaloy Surface in Saturated Water Pool Boiling, J. Nucl. Sci. Technol., vol. 52, pp. 596–606, 2015.
  • B. J. Zhang, T. Hwang, J.-D. Nam, J. Suhr, and K. J. Kim, Noncovalently Assembled Nanotubular Porous Layers for Delaying of Heating Surface Failure, Sci. Rep., Scientific reports, Nature Publishing Group, vol.4, 2014.
  • B. J. Zhang and K. J. Kim, Nucleate Pool Boiling Heat Transfer Augmentation on Hydrophobic Self-assembly Mono-layered Alumina Nano-porous Surfaces, Int. J. Heat Mass Transf., vol. 73, pp. 551–561, 2014.
  • J. Yang, M. B. Dizon, F. B. Cheung, J. L. Rempe, K. Y. Suh, and S. B. Kim, Critical Heat Flux for Downward Facing Boiling on a Coated Hemispherical Surface, Exp. Heat Transf., vol. 18, pp. 223–242, 2005.
  • J. Sinha, Effects of Surface Roughness, Oxidation Level, and Liquid Subcooling on the Minimum Film Boiling Temperature, Exp. Heat Transf., vol. 16, pp. 45–60, 2003.
  • W. Lee and S.-J. Park, Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures, Chem. Rev., vol. 114, pp. 7487–7556, 2014.
  • J. O’Sullivan and G. Wood, The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium, Proc. R. Soc. London A, vol. 317, pp. 511–543, 1970.
  • R. C. Alkire, Y. Gogotsi, P. Simon, and A. Eftekhari, Nanostructured Materials in Electrochemistry, VCH Verlag GmbH & Co. KGaA, Weinheim, John Wiley & Sons, 2008.
  • A. Nazari and S. Saedodin, Porous Anodic Alumina Coating For Optimisation of Pool-boiling Performance, Surf. Eng., pp. 1–6, 2016.
  • S. J. Kline and F. McClintock, Describing Uncertainties in Single-sample Experiments, Mech. Eng., vol. 75, pp. 3–8, 1953.
  • J. P. Holman, Experimental Methods For Engineers, New York: McGraw-Hill, 1966.
  • K. Kubiak, M. Wilson, T. Mathia, and P. Carval, Wettability versus Roughness of Engineering Surfaces, Wear, vol. 271, pp. 523–528, 2011.
  • C. Guo, X.-W. Wang, and Z.-H. Yuan, Pore diameter-dependence wettability of porous anodized aluminum oxide membranes, J. Porous Mater., vol. 20, pp. 673–677, 2013.
  • H. Leese, V. Bhurtun, K. P. Lee, and D. Mattia, Wetting Behaviour of Hydrophilic and Hydrophobic Nanostructured Porous Anodic Alumina, Colloids Surf., A, vol. 420, pp. 53–58, 2013.
  • M. Norek and A. Krasiński, Controlling of Water Wettability by Structural and Chemical Modification of Porous Anodic Alumina (PAA): Towards Super-hydrophobic Surfaces, Surf. Coat. Technol., vol. 276, pp. 464–470, 2015.
  • L. Zaraska, G. D. Sulka, and M. Jaskuła, Anodic Alumina Membranes with Defined Pore Diameters and Thicknesses Obtained by Adjusting the Anodizing Duration and Pore Opening/Widening Time, J. Solid State Electrochem., vol. 15, pp. 2427–2436, 2011.
  • A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, and W. Misiolek, Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes, J. Membr. Sci., vol. 319, pp. 192–198, 2008.
  • A. Christoulaki, S. Dellis, N. Spiliopoulos, D. Anastassopoulos, and A. Vradis, Controlling the Thickness of Electrochemically Produced Porous Alumina Membranes: The Role of the Current Density During the Anodization, J. Appl. Electrochem., vol. 44, pp. 701–707, 2014.
  • N. Zuber, Hydrodynamic Aspects of Boiling Heat Transfer, Thesis, California University, Los Angeles and Ramo-Wooldridge Corp., Los Angeles, 1959.
  • S. G. Kandlikar, A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation, J. Heat Transf., vol. 123, pp. 1071–1079, 2001.
  • S. Kim, I. C. Bang, J. Buongiorno, and L. Hu, Surface Wettability Change during Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux, Int. J. Heat Mass Transf., vol. 50, pp. 4105–4116, 2007.
  • B. J. Zhang, J. Park, and K. J. Kim, Augmented Boiling Heat Transfer on the Wetting-modified Three Dimensionally-interconnected Alumina Nano Porous Surfaces in Aqueous Polymeric Surfactants, Int. J. Heat Mass Transf., vol. 63, pp. 224–232, 2013.
  • T. G. Theofanous and T.-N. Dinh, High Heat Flux Boiling and Burnout as Microphysical Phenomena: Mounting Evidence and Opportunities, Multiphase Sci. Technol., vol. 18, iss. 3, 2006.
  • E. W. Washburn, The Dynamics of Capillary Flow, Phys. Rev., vol. 17, pp. 273–283, 1921.
  • Y. Tang, B. Tang, J. Qing, Q. Li, and L. Lu, Nanoporous Metallic Surface: Facile Fabrication and Enhancement of Boiling Heat Transfer, Appl. Surf. Sci., vol. 258, pp. 8747–8751, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.