Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 30, 2017 - Issue 6
225
Views
10
CrossRef citations to date
0
Altmetric
Articles

Heat transfer from a hot moving steel plate by using Cu-Al layered double hydroxide nanofluid based air atomized spray

, , , &
Pages 500-516 | Received 25 Oct 2016, Accepted 09 Mar 2017, Published online: 19 May 2017

References

  • U. Alam, J. Krol, E. Specht, and J. Schmidt, Enhancement and Local Regulation of Metal Quenching Using Atomized Sprays, J. ASTM Int., vol. 5, pp. 1–10, 2008.
  • S. V. Ravikumar, J. M. Jha, I. Sarkar, S. S. Mohapatra, S. K. Pal, and S. Chakraborty. Achievement of Ultrafast Cooling Rate in a Hot Steel Plate by Air-atomized Spray with Different Surfactant Additives. Exp. Thermal Fluid Sci., vol 50, pp. 79–89, 2013;.
  • J. Wendelstorf, K. H. Spitzer, and R. Wendelstorf, Spray Water Cooling Heat Transfer at High Temperatures and Liquid Mass Fluxes, Int. J. Heat Mass Transf., vol. 51, pp. 4902–4910, 2008.
  • Z. H. Liu and J. Wang, Study on Film Boiling Heat Transfer for Water Jet Impinging on High Temperature Flat Plate, Int. J. Heat Mass Transf., vol. 44, pp. 2475–2481, 2001.
  • S. S. Mohapatra, S. Chakraborty, and S. K. Pal, Experimental Studies on Different Cooling Processes to Achieve Ultra-Fast Cooling Rate for Hot Steel Plate, Exp. Heat Transf., vol. 25, pp. 111–126, 2012.
  • S. Ravikumar, J. Jha, S. Mohapatra, A. Sinha, S. Pal, and S. Chakraborty, Experimental Study of the Effect of Spray Inclination on Ultrafast Cooling of a Hot Steel Plate, Heat Mass Transf., vol. 49, pp. 1509–1522, 2013.
  • S. V. Ravikumar, J. M. Jha, S. S. Mohapatra, S. K. Pal, and S. Chakraborty, Experimental Investigation of Effect of Different Types of Surfactants and Jet Height on Cooling of a Hot Steel Plate, J. Heat Trans., vol. 136, 072102, 2014.
  • S. V. Ravikumar, J. M. Jha, I. Sarkar, S. K. Pal, and S, Chakraborty. Enhancement of Heat Transfer Rate in Air-atomized Spray Cooling of a Hot Steel Plate by Using an Aqueous Solution of Non-ionic Surfactant and Ethanol, Appl. Thermal Eng., vol. 64, pp. 64–75, 2014.
  • S. Mohapatra, S. V. Ravikumar, R. Ranjan, S. K. Pal, S. B. Singh, and S. Chakraborty, Ultra Fast Cooling and Its Effect on the Mechanical Properties of Steel, J. Heat Transf., vol. 136, 2014, 032101-032101-032109.
  • S. V. Ravikumar, J. M. Jha, S. S. Mohapatra, S. K. Pal, and S. Chakraborty, Influence of Ultrafast Cooling on Microstructure and Mechanical Properties of Steel, Steel Res. Int., vol. 84, pp. 1157–1170, 2013.
  • T. Y. Xiong and M. C. Yuen, Evaporation of a Liquid Droplet on a Hot Plate, Int. J. Heat Mass Transf., vol. 34, pp. 1881–1894, 1991.
  • W. J. J. Vorster, S. A. Schwindt, J. Schupp, and A. M. Korsunsky, Analysis of the Spray Field Development on a Vertical Surface during Water Spray-quenching Using a Flat Spray Nozzle, Appl. Thermal Eng.vol. 29, pp. 1406–1416, 2009.
  • V. Trisaksri and S. Wongwises, Critical Review of Heat Transfer Characteristics of Nanofluids. Renew. Sustain. Energy Rev.,, vol. 11, pp. 512–523, 2007.
  • X.-Q. Wang and A. S. Mujumdar, Heat Transfer Characteristics of Nanofluids: A Review, Int. J. Thermal Sci.,, vol. 46, pp. 1–19, 2007.
  • S. M. S. Murshed, K. C. Leong, and C. Yang, Investigations of Thermal Conductivity and Viscosity of Nanofluids, Int. J. Thermal Sci., vol. 47, pp. 560–568, 2008.
  • S. Mitra, S. K. Saha, S. Chakraborty, and S. Das, Study on Boiling Heat Transfer of Water–Tio2 and Water–MWCNT Nanofluids Based Laminar Jet Impingement on Heated Steel Surface, Appl. Thermal Eng., vol. 37, pp. 353–359, 2012.
  • Z.-H. Liu and Y.-H. Qiu, Boiling Heat Transfer Characteristics of Nanofluids Jet Impingement on a Plate Surface, Heat Mass. Transf., vol. 43, pp. 699–706, 2007.
  • S. E. B. Maïga, S. J. Palm, C. T. Nguyen, G. Roy, and N. Galanis, Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows, Int. J. Heat Fluid Flow, vol. 26, pp. 530–546, 2005.
  • C. T. Nguyen, N. Galanis, G. Polidori, S. Fohanno, C. V. Popa, and A. Le Bechec, An Experimental Study of a Confined and Submerged Impinging Jet Heat Transfer Using Al2O3-Water Nanofluid, Int. J. Thermal Sci., vol. 48, pp. 401–411, 2009.
  • Y. Xuan and W. Roetzel, Conceptions for Heat Transfer Correlation of Nanofluids, Int. J. Heat Mass Transf., vol. 43, pp. 3701–3707, 2000.
  • K. S. Hwang, S. P. Jang, and S. U. S. Choi, Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime, Int. J. Heat Mass Transf., vol. 52, pp. 193–199.
  • Q. Wang and D. O’Hare, Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets, Chem. Rev., vol. 112, pp. 4124–4155, 2012.
  • B. Sahu and G. Pugazhenthi, Properties of Polystyrene/Organically Modified Layered Double Hydroxide Nanocomposites Synthesized by Solvent Blending Method, J. Appl. Polym. Sci., vol. 120, 2485–2495, 2011.
  • F. Kooli, W. Jones, V. Rives, and M. A. Ulibarri, An Alternative Route to Polyoxometalate-Exchanged Layered Double Hydroxides: The Use of Ultrasound, J. Mater. Sci. Lett., vol. 16, pp. 27–29, 1997.
  • J. Rocha, M. Del Arco, V. Rives, and M. A. Ulibarri, Reconstruction of Layered Double Hydroxides from Calcined Precursors: A Powder XRD and 27al MAS NMR Study, J. Mater. Chem., vol. 9, pp. 2499–2503, 1999.
  • P. Benito, F. M. Labajos, and V. Rives, Microwave-Treated Layered Double Hydroxides Containing Ni2+ and Al3+: The Effect of Added Zn2+, J. Solid State Chem., vol. 179, pp. 3784–3797, 2006.
  • A. Sorrentino, G. Gorrasi, M. Tortora, V. Vittoria, U. Costantino, F. Marmottini, and F. Padella, Incorporation of Mg-Al Hydrotalcite into a Biodegradable Poly(Ε-caprolactone) by High Energy Ball Milling. Polymer., vol. 46, pp. 1601–1608, 2005.
  • S. Chakraborty, M. Kumar, K. Suresh, and G. Pugazhenthi, Influence of Organically Modified Nial Layered Double Hydroxide (LDH) Loading on the Rheological Properties of Poly (Methyl Methacrylate) (PMMA)/LDH Blend Solution, Powder Technol., vol. 256, pp. 196–203, 2014.
  • V. Rives, O. Prieto, A. Dubey, and S. Kannan, Synergistic Effect in the Hydroxylation of Phenol over Conial Ternary Hydrotalcites, J. Catal., vol. 220, pp. 161–171, 2003.
  • S. Chakraborty, I. Sarkar, K. Haldar, S. K. Pal, and S. Chakraborty, Synthesis of Cu-Al Layered Double Hydroxide Nanofluid and Characterization of Its Thermal Properties, Appl. Clay Sci., vol. 107, pp. 98–108.
  • M. M. Ghosh, S. Ghosh, and S. K. Pabi, Effects of Particle Shape and Fluid Temperature on Heat-Transfer Characteristics of Nanofluids, J. Mater. Eng. Perform., vol. 22, pp. 1525–1529, 2013.
  • W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, and P. Keblinski, Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids, Int. J. Heat Mass Transf., vol. 51, pp. 1431–1438, 2008.
  • S. Özerinç, S. Kakaç, and A. G. Yazıcıoğlu, Enhanced Thermal Conductivity of Nanofluids: A State-of-the-art Review, Microfluid. Nanofluidics, vol. 8, pp. 145–170, 2009.
  • S. Chakraborty, A. Chakraborty, D. A. S. Sumitesh, T. Mukherjee, D. Bhattacharjee, and R. K. Ray, Application of Water Based-Tio2 Nano-Fluid for Cooling of Hot Steel Plate, ISIJ Int., vol. 50, pp. 124–127, 2010.
  • J. M. Jha, S. V. Ravikumar, A. M. Tiara, I. Sarkar, S. K. Pal, and S. Chakraborty, Ultrafast Cooling of a Hot Moving Steel Plate by Using Alumina Nanofluid Based Air Atomized Spray Impingement, Appl. Thermal Eng., vol. 75, pp. 738–747, 2015.
  • S. S. Mohapatra, S. V. Ravikumar, S. K. Pal, and S. Chakraborty, Ultra Fast Cooling of a Hot Steel Plate by Using High Mass Flux Air Atomized Spray, Steel Res. Int.,vol. 84, pp. 229–236, 2013.
  • J. M. Jha, S. V. Ravikumar, K. Haldar, I. Sarkar, S. K. Pal, and S. Chakraborty, Heat Transfer from a Hot Moving Steel Plate by Air-atomized Spray Impingement, Exp. Heat Trans., vol. 29, pp. 78–96,2016.
  • D. M. Trujillo and H. R. Busby, Practical Inverse Analysis in Engineering, CRC Press, Boca Raton, Florida, USA, p. 235, 1997.
  • D. M. Trujillo and H. R. Busby, INTEMP, Inverse Heat Transfer Analysis User’s Manual. Trucomp Col, Fountain Valley, Canada, pp. 1–48, 2003.
  • S. V. Ravikumar, J. M. Jha, A. M. Tiara, S. K. Pal, and S. Chakraborty, Experimental Investigation of Air-Atomized Spray with Aqueous Polymer Additive for High Heat Flux Applications, Int. J. Heat Mass Transf., vol. 72, pp. 362–377, 2014.
  • J. M. Jha, S. V. Ravikumar, K. Haldar, I. Sarkar, S. K. Pal, and S. Chakraborty, Heat Transfer from a Hot Moving Steel Plate by Air-atomized Spray Impingement, Exp. Heat Transf., vol. 29, pp. 78–96, 2015.
  • H. Wang, W. Yu, and Q. Cai, Experimental Study of Heat Transfer Coefficient on Hot Steel Plate during Water Jet Impingement Cooling, J. Mater. Process. Technol., vol. 212, pp. 1825–1831, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.