Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 31, 2018 - Issue 2
290
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Pool boiling heat transfer and quench front velocity during quenching of a rodlet in subcooled water: Effects of the degree of subcooling

, , , , &
Pages 148-160 | Received 08 Jul 2017, Accepted 03 Oct 2017, Published online: 28 Nov 2017

References

  • R. B. Duffey and D. T. C. Porthouse, The Physics of Rewetting in Water Reactor Emergency Core Cooling, Nucl. Eng. Des., vol. 25, pp. 379–394, 1973. DOI: 10.1016/0029-5493(73)90033-2.
  • G. Ramesh and K. N. Prabhu, Comparative Study of Wetting and Cooling Performance of Polymer-Salt Hybrid Quench Medium with Conventional Quench Media, Exp. Heat Transfer, vol. 28, pp. 464–492, 2015. DOI: 10.1080/08916152.2014.913088.
  • B. Fu, Y. Ho, M. Ho, and C. Pan, Quenching Characteristics of a Continuously-Heated Rod in Natural Sea Water, Int. J. Heat Mass Transfer, vol. 95, pp. 206–213, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.11.093.
  • G. E. Totten, H. M. Tensi, and K. Lainer, Performance of Vegetable Oils as a Cooling Medium in Comparison to a Standard Mineral Oil, J. Mater. Eng. Perform., vol. 8, pp. 409–416, 1999. DOI: 10.1361/105994999770346693.
  • H. Hu, et al., Modification and Enhancement of Cryogenic Quenching Heat Transfer by a Nanoporous Surface, Int. J. Heat Mass Transfer, vol. 80, pp. 636–643, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.09.056.
  • H. J. Vergara-Hernández and B. Hernández-Morales, A Novel Probe Design to Study Wetting Front Kinematics During Forced Convective Quenching, Exp. Therm. Fluid Sci., vol. 33, pp. 797–807, 2009. DOI: 10.1016/j.expthermflusci.2009.02.007.
  • H. Jouhara and B. P. Axcell, Film Boiling Heat Transfer and Vapor Film Collapse on Spheres, Cylinder and Plane Surfaces, Nucl, Eng. Des., vol. 239, pp. 1885–1900, 2009.
  • H. Kim, G. DeWitt, T. McKrell, J. Buongiorno, and L. Hu, On the Quenching of Steel and Zircaloy Spheres in Water-Based Nanofluids with Alumina, Silica and Diamond Nanoparticles, Int, J. Multiphase Flow., vol. 35, pp. 427–438, 2009. DOI: 10.1016/j.ijmultiphaseflow.2009.02.004.
  • H. Kim, J. Buongiorno, L. Hu, and T. McKrell, Nanoparticle Deposition Effects on the Minimum Heat Flux Point and Quench Front Speed During Quenching in Water-Based Alumina Nanofluids, Int. J. Heat Mass Transfer, vol. 53, pp. 1542–1553, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.11.029.
  • S. Chun, I. Bang, Y. Choo, and C. Song, Heat Transfer Characteristics of Si and SiC Nanofluids During a Rapid Quenching and Nanoparticles Deposition Effects, Int. J. Heat Mass Transfer, vol. 54, pp. 1217–1223, 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.10.029.
  • L. Fan, et al., The Effect of Concentration on Transient Pool Boiling Heat Transfer of Graphene-Based Aqueous Nanofluids, Int. J. Therm. Sci., vol. 91, pp. 83–95, 2015. DOI: 10.1016/j.ijthermalsci.2015.01.009.
  • L. Fan, J. Li, D. Li, L. Zhang, and Z. Yu, Regulated Transient Pool Boiling of Water During Quenching on Nanostructured Surfaces with Modified Wettability from Superhydrophilic to Superhydrophobic, Int. J. Heat Mass Transfer, vol. 76, pp. 81–89, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.04.025.
  • C. Y. Lee, T. H. Chun, and W. K. In, Effect of Change in Surface Condition Induced by Oxidation on Transient Pool Boiling Heat Transfer of Vertical Stainless Steel and Copper Rodlets, Int. J. Heat Mass Transfer, vol. 79, pp. 397–407, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.08.030.
  • A. Dasgupta, A. S. Chinchole, P. P. Kulkarni, D. K. Chandraker, and A. K. Nayak, Quenching of a Heated Rod: Physical Phenomena, Heat Transfer, and Effect Of Nanofluids, ASME J. Heat Transfer, vol. 138, pp. 122401, 2016. DOI: 10.1115/1.4034179.
  • J. Kang, et al., Film Boiling Heat Transfer on a Completely Wettable Surface with Atmospheric Saturated Distilled Water Quenching, Int. J. Heat Mass Transfer, vol. 93, pp. 67–74, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.09.049.
  • N. Kozlov and O. Kelβer, Influencing on Liquid Quenching by Surface Structuring, Int. J. Therm. Sci., vol. 101, pp. 133–142, 2016. DOI: 10.1016/j.ijthermalsci.2015.10.025.
  • C. Y. Lee, W. K. In, and Y. H. Koo, Transient Pool Boiling Heat Transfer During Rapid Cooling Under Saturated Water Condition, J. Nucl. Sci. Technol., vol. 53, pp. 371–379, 2016. DOI: 10.1080/00223131.2015.1045952.
  • C. Y. Lee and S. Kim, Parametric Investigation on Transient Boiling Heat Transfer of Metal Rod Cooled Rapidly In Water Pool, Nucl. Eng. Des., vol. 313, pp. 118–128, 2017. DOI: 10.1016/j.nucengdes.2016.12.005.
  • V. K. Dhir and G. P. Purohit, Subcooled Film Boiling Heat Transfer from Spheres, Nucl. Eng. Des., vol. 47, pp. 49–66, 1978. DOI: 10.1016/0029-5493(78)90004-3.
  • M. Shoji, L. C. Witte, and S. Sankaran, The Influence of Surface Conditions and Subcooling on Film-Transition Boiling, Exp. Therm. Fluid Sci., vol. 3, pp. 280–290, 1990. DOI: 10.1016/0894-1777(90)90003-P.
  • L. Fan, J. Li, L. Zhang, Z. Yu, and K. Cen, Pool Boiling Heat Transfer on a Nanoscale Roughness-Enhanced Superhydrophilic Surface for Accelerated Quenching In Water, Appl. Therm. Eng., vol. 109, pp. 630–639, 2016. DOI: 10.1016/j.applthermaleng.2016.08.131.
  • L. Fan, et al., Subcooled Pool Film Boiling Heat Transfer from Spheres with Superhydrophobic Surfaces: An Experimental Study, ASME J. Heat Transfer, vol. 138, pp. 021503, 2016. DOI: 10.1115/1.4031303.
  • V. K. Dhir, R. B. Duffey, and I. Catton, Quenching Studies on a Zircaloy Rod Bundle, ASME J. Heat Transfer, vol. 103, pp. 293–299, 1981. DOI: 10.1115/1.3244456.
  • J. Filipovic, F. P. Incropera, and R. Viskanta, Rewetting Temperature and Velocity in a Quenching Experiment, Exp. Heat Transfer, vol. 8, pp. 257–270, 1995. DOI: 10.1080/08916159508946505.
  • C. L. Tien and L. S. Yao, Analysis of Conduction-Controlled Rewetting of a Vertical Surface, ASME J. Heat Transfer, vol. 97, pp. 161–165, 1975. DOI: 10.1115/1.3450335.
  • B. D. G. Piggott and D. T. C. Porthouse, A Correlation of Rewetting Data, Nucl. Eng. Des., vol. 32, pp. 171–181, 1975. DOI: 10.1016/0029-5493(75)90128-4.
  • Y. Murao, Correlation of Quench Phenomena for Bottom Flooding During Loss-of-Coolant Accidents, J. Nucl. Sci. Technol., vol. 15, pp. 875–885, 1978. DOI: 10.1080/18811248.1978.9735606.
  • M. Aamir, L. Qiang, Z. Xun, H. Wang, and R. Ullah, Study on Ultra-Fast Cooling Behaviors of Water Spray Cooled Stainless Steel Plates, Exp. Heat Transfer, vol. 29, pp. 299–321, 2016. DOI: 10.1080/08916152.2014.976722.
  • J. M. Jha, S. V. Ravikumar, I. Sarkar, S. K. Pal, and S. Chakraborty, Jet Impingement Cooling of a Hot Moving Steel Plate: An Experimental Study, Exp. Heat Transfer, vol. 29, pp. 615–631, 2016. DOI: 10.1080/08916152.2015.1046019.
  • M. K. Agrawal and S. K. Sahu, An Experimental Study on the Rewetting of a Hot Vertical Surface by Circular Water Jet Impingement, Exp. Heat Transfer, vol. 29, pp. 151–172, 2016. DOI: 10.1080/08916152.2014.973973.
  • N. H. Bhatt, et al., Role of Water Temperature in Case of High Mass Flux Spray Cooling of a hot AISI 304 Steel Plate at Different Initial Surface Temperatures, Exp. Heat Transfer, vol. 30, pp. 369–392, 2017. DOI: 10.1080/08916152.2016.1269138.
  • O. R. Burggraf, An Exact Solution of the Inverse Problem in Heat Conduction Theory and Applications, ASME J. Heat Transfer, vol. 86, pp. 373–380, 1964. DOI: 10.1115/1.3688700.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.