Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 32, 2019 - Issue 2
212
Views
9
CrossRef citations to date
0
Altmetric
Articles

The effect of oxide layer in case of novel coolant spray at very high initial surface temperature

&
Pages 116-132 | Received 23 Jan 2018, Accepted 01 Jun 2018, Published online: 21 Jun 2018

References

  • M. Takeda, T. Onishi, S. Nakakubo, and S. Fujimoto, “Physical properties of iron-oxide scales on Si-containing steels at high temperature,” Mater. Trans., vol. 50, pp. 2242–2246, 2009. DOI: 10.2320/matertrans.M2009097.
  • C. Kohler, R. Jeschar, R. Scholz, J. Slowik, and G. Borchardt, “Influence of oxide scales on heat transfer in secondary cooling zones in the continuous casting process: part I. Heat transfer through hot-oxidized steel surfaces cooled by spray-water,” Steel Res. Int., vol. 61, pp. 295–301, 1990. DOI: 10.1002/srin.199000352.
  • J. Slowik, G. Borchardt, C. Kohler, R. Jeschar, and R. Scholz, “Influence of oxide scales on heat transfer in secondary cooling zones in the continuous casting process: part II. Determination of material properties of oxide scales on the steel under spray-water cooling conditions,” Steel Res. Int., vol. 61, pp. 302–311, 1990.
  • W. Sun, A. Tieu, Z. Jiang, H. Zhu, and C. Lu, “Oxide scales growth of low-carbon steel at high temperatures,” J. Mater. Process Technol., vol. 155–156, pp. 1300–1306, 2004. DOI: 10.1016/j.jmatprotec.2004.04.172.
  • J. Wendelstorf, K. H. Spitzer, and R. Wendelstorf, “Spray water-cooling heat transfer at high temperatures and liquid mass fluxes,” Int. J. Heat Mass Transf., vol. 51, pp. 4902–4910, 2008. DOI: 10.1016/j.ijheatmasstransfer.2008.01.032.
  • R. Viscorova, R. Scholz, K. H. Spitzer, and J. Wendelstorf, “Spray water cooling heat transfer under oxide scale formation conditions,” Adv. Comput. Methods in Heat Transfer IX, vol. 53, pp. 136–172, 2006.
  • S. S. Mohapatra, et al., “Ultra-fast cooling of hot steel plate by air atomized spray with salt solution,” Heat Mass Transf., vol. 50, pp. 587–601, 2014. DOI: 10.1007/s00231-013-1260-6.
  • Y. M. Qiao and S. Chandra, “Experiments on adding a surfactant to water drops boiling on a hot surface,” Proc. Royal Soc. A: Math. Eng. Phys. Sci., vol. 453, pp. 673−689, 1997. DOI: 10.1098/rspa.1997.0038.
  • S. S. Mohapatra, S. V. Ravikumar, A. Verma, S. K. Pal, and S. Chakraborty, “Experimental Investigation of Effect of a Surfactant to Increase Cooling of Hot Steel Plates by a Water Jet,” J. Heat Transf., vol. 135, pp. 032101–032108, 2013. DOI: 10.1115/1.4007878.
  • S. S. Mohapatra, J. M. Jha, K. Srinath, S. K. Pal, and S. Chakraborty, “Enhancement of cooling rate for a hot steel plate using air-atomized spray with surfactant-added water,” Exp. Heat Transf., vol. 27, pp. 72–90, 2014. DOI: 10.1080/08916152.2012.719068.
  • S. S. Mohapatra, S. V. Ravikumar, S. Andhare, S. Chakraborty, and S. K. Pal, “Experimental study and optimization of air atomized spray with surfactant added water to produce high cooling rate,” J Enhanced Heat Transf., vol. 19, pp. 397–408, 2012. DOI: 10.1615/JEnhHeatTransf.v19.i5.
  • J. M. Jha, I. Sarkar, S. Chakraborty, S. K. Pal, and S. Chakraborty, “Heat transfer from a hot moving steel plate by using Cu-Al layered double hydroxide nano fluid based air atomized spray,” Exp. Heat Transfer, vol. 30, no. 6, pp. 500–516, 2017. DOI: 10.1080/08916152.2017.1312638.
  • M. Modak, A. K. Sharma, and S. K. Sahu, “An experimental investigation on heat transfer enhancement in circular jet impingement on hot surfaces by using Al2O3/water nano-fluids and aqueous high-alcohol surfactant solution,” Exp. Heat Transfer, vol. 31, no. 4, pp. 275–296, 2018. DOI: 10.1080/08916152.2017.1381655.
  • N. H. Bhatt, et al., “Enhancement of heat transfer rate of high mass flux spray cooling by ethanol-water and ethanol-tween20-water solution at very high initial surface temperature,” Int. J. Heat Mass Transf., vol. 110, pp. 330–347, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.02.094.
  • N. H. Bhatt, et al., “Role of water temperature in case of high mass flux spray cooling of a hot AISI 304 steel plate at different initial surface temperatures,” Exp. Heat Transf., vol. 30, no. 5, pp. 369–392, 2017. DOI: 10.1080/08916152.2016.1269138.
  • Sabariman and E. Specht. “Characterization of the boiling width on metal quenching with spray cooling,” Exp. Heat Transf., 2018. DOI: 10.1080/08916152.2018.1431737.
  • S. V. Ravikumar, et al., “Achievement of ultrafast cooling rate in a hot steel plate by air-atomized spray with different surfactant additives,” Exp. Thermal Fluid Sci., vol. 50, pp. 79–89, 2013. DOI: 10.1016/j.expthermflusci.2013.05.007.
  • D. M. Trujillo and H. R. Busby, INTEMP-inverse Heat Transfer Analysis User’s Manual. Fountain valley, Canada: Trucomp Co., 2003, pp. 1–47.
  • D. M. Trujillo and H. R. Busby, “Optimal regularization of inverse heat conduction problem using the L-curve,” Int. J. Numer. Methods Heat Fluid Flow, vol. 4, pp. 447–452, 1994. DOI: 10.1108/EUM0000000004048.
  • D. M. Trujillo and H. R. Busby, Practical Inverse Analysis in Engineering, Boca Raton, FL: CRC press, LLC, 1997.
  • H. R. Busby and D. M. Trujillo, “Numerical solution to a two-dimensional inverse heat conduction problem,” Int. J. Numer. Methods Eng., vol. 21, pp. 349–359, 1985. DOI: 10.1002/nme.1620210211.
  • G. G. Nasr and A. J. Yule, “Studies of high-pressure water sprays from full-cone atomizers,” Conf. proc., ILASS, 1999.
  • A. R. Pati, Lily, A. P. Behera, B. Munshi, and S. S. Mohapatra, “Enhancement of heat removal rate of high mass flux spray cooling by sea water,” Exp. Thermal Fluid Sci., vol. 89, pp. 19–40, 2017. DOI: 10.1016/j.expthermflusci.2017.07.012.
  • A. R. Pati, A. Kumar, and S. S. Mohapatra, “Upward and downward facing high mass flux spray cooling with additives: a novel technique to enhance the heat removal rate at high initial surface temperature,” Heat Mass Transf., vol. 54, pp. 1669–1680, 2018. DOI: 10.1007/s00231-017-2258-2.
  • S. S. Mohapatra, et al., “Effect of oxide layer in the ultra-fast cooling of a steel plate,” Exp. Heat Transf., vol. 28, pp. 156–173, 2015. DOI: 10.1080/08916152.2013.845624.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.