Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 32, 2019 - Issue 2
713
Views
43
CrossRef citations to date
0
Altmetric
Articles

An experimental investigation on pool boiling heat transfer enhancement using Cu-Al2O3 nano-composite coating

&
Pages 133-158 | Received 14 Feb 2018, Accepted 01 Jun 2018, Published online: 03 Jul 2018

References

  • Ahmad Nazari and Seyfolah Saedodin, Critical heat flux enhancement of pool boiling using a porous nanostructured coating, Experimental Heat Transfer, vol. 30, no. 4, 316–327, 2017.
  • Parul Goel, Arun K. Nayak, Pradyumna Ghosh & Jyeshtharaj B. Joshi (2018) Experimental study of bubble departure characteristics in forced convective subcooled nucleate boiling, Experimental Heat Transfer, 31:3, 194–218, DOI: 10.1080/08916152.2017.1397821.
  • Sudev Das, D.S. Kumar, Swapan Bhaumik, Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface, Appl. Therm. Eng., vol. 96, pp. 555–567, 2016.
  • M. Zupancic, M. Steinbücher, P. Gregorcic, I. Golobi, Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilic polydimethylsiloxane-silica patterned surfaces, Appl. Therm. Eng., vol. 91, pp. 288–297, 2015.
  • B. Shi, Y.B. Wang, K. Chen, Pool boiling heat transfer enhancement with copper nanowire arrays, Appl. Therm. Eng., vol. 75, pp. 115–121, 2015.
  • A. Candan, B. Markal, O. Aydin & M. Avci (2018): Saturated flow boiling characteristics in single rectangular minichannels: effect of aspect ratio, Experimental Heat Transfer, DOI: 10.1080/08916152.2018.1463305.
  • E. Demir, T. Izci, A.S. Alagoz, T. Karabacak, A. Kosar, Effect of silicon nanorod length on horizontal nanostructured plates in pool boiling heat transfer with water, Int. J. Thermal Sci., vol. 82, pp. 111–121, 2015.
  • A.R. Betz, J. Xu, H. Qiu, D. Attinger, Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling?, Appl Phys. Lett., vol. 97, pp. 141909, 2010.
  • A. Sathyanarayana, P. Warrier, Y. Im, Y. Joshi, A.S. Teja, Pool boiling of HFE 7200–C4H4F6O mixture on hybrid micro-nanostructured surface, J. Nanotechnol. Eng. Med., vol. 4, pp. 041004, 2012.
  • D. Saeidi, A.A. Alemrajabi, Experimental investigation of pool boiling heat transfer and critical heat flux of nanostructured surfaces, Int. J. Heat Mass Transf., vol. 60, pp. 440–449, 2013.
  • Y. Tang, B. Tang, Q. Li, J. Qing, L. Lu, K. Chen, Pool-boiling enhancement by novel metallic nanoporous surface, Exp. Therm. Fluid Sci., vol. 44, pp. 194–198, 2013.
  • P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal transport measurements of individual multiwalled nanotubes, Phy. Rev. Lett., vol. 87, pp. 1–4, 2011.
  • S. Ujereh, T. Fisher, I. Mudawar, Effects of carbon nanotube arrays on nucleate pool boiling, Int. J. Heat Mass Transf., vol. 50, pp. 4023–4038, 2007.
  • S. Launay, A.G. Fedorov, Y. Joshi, A. Cao, P.M. Ajayan, Hybrid micro-nano structural thermal interfaces for pool boiling heat transfer enhancement, Microelectron. J., vol. 37, pp. 1158–1164, 2006.
  • H.S. Ahn, V. Sathyamurthi, D. Banerjee, Pool boiling experiments on a nanostructured surface, IEEE Tran. Compon. Packag. Tech., vol. 32, pp. 156–162, 2009.
  • Z. Yao, Y.W. Lu, S.G. Kandlikar, Pool boiling heat transfer enhancement throughnanostructures on silicon microchannels, J. Nanotechnol. Eng. Med., vol. 3 (031002), pp. 1–8, 2012.
  • R. Chen, M.C. Lu, V. Srinivasan, Z. Wang, H.H. Cho, A. Majumdar, Nanowires for enhanced boiling heat transfer, Nano Lett., vol. 9 (2), pp. 548–553, 2008.
  • B. Shi, Y.B. Wang, K. Chen, Pool boiling heat transfer enhancement with copper nanowires arrays, Appl. Therm. Eng., vol. 75, pp. 115–121, 2015.
  • Z. Yao, Y.W. Lu, S.G. Kandlikar, Direct growth of copper nanowires on a substrate for boiling applications, Micro Nano Lett., vol. 6 (7), pp. 563–566, 2011.
  • G.U. Kumar, S. Suresh, M.R. Thansekhar, P.D. Babu, Effect of diameter of metal nanowires on pool boiling heat transfer with FC-72, Appl. Surf. Sci., vol. 30, pp. 509–520, 2017.
  • R. Wen, Q. Li, W. Wang, B. Latour, C.H. Li, C. Li, Y.-C. Lee, R. Yang, Enhanced bubble nucleation and liquid rewetting for highly efficient boiling heat transfer on two-level hierarchical surfaces with patterned copper nanowire arrays, Nano Energy, vol. 38, pp. 59–65, 2017.
  • D.-II. Shim, G. Choi, N. Lee, T. Kim, B.S. Kim, H.H. Cho, Enhancement of pool boiling heat transfer using aligned silicon nanowire arrays, ACS Appl. Mater. Interfaces, vol. 9 (20) pp. 17595–17602, 2017.
  • J.Y. Chang, S.M. You, Enhanced boiling heat transfer from micro-porous surfaces: effect of a coating composition and method, Int. J. Heat Mass Transf., vol. 40, pp. 4449–4460, 1997.
  • C.Y. Yang, C.F. Liu, Effect of coating layer for boiling heat transfer on micro porous coated surface in confined and unconfined spaces, Exp. Therm. Fluid Sci., vol. 47, pp. 40–47, 2013.
  • M.S. El-Genk, A.F. Ali, Enhanced nucleate boiling on copper micro-porous surfaces, Int. J. Multiphase Flow, vol. 36, pp. 780–792, 2010.
  • C.Y. Lee, M.M.H. Bhuiya, K.J. Kim, Pool boiling heat transfer with nano- porous surfaces, Int. J. Heat Mass Transf., vol. 53, pp. 4274–4279, 2010.
  • S. Jun, J. Kim, D. Son, H.Y. Kim, S.M. You, Enhancement of pool boiling heat transfer in water using sintered copper microporous coatings, Nucl. Eng. Technol., vol. 48, pp. 932–940, 2016.
  • A. Jaikumar, A. Gupta, S.G. Kandlikar, C.-Y. Yang, C.-Y. Su, Scale effects of grapheme and graphene oxide coatings on pool boiling enhancement mechanisms, Int. J. Heat Mass Transf., vol. 109, pp. 357–366, 2017.
  • K.S. Suganthi, V.L. Vinodhan, K.S. Rajan, Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants, Appl. Energy, vol. 135, pp. 548–559, 2014.
  • S. Vemuri, K.J. Kim, Pool boiling of saturated FC-72 on nano-porous surface, Int. Commun. Heat Mass Transf., vol. 32, pp. 27–31, 2005.
  • W. Wu, H. Bostanci, L.C. Chow, Y. Hong, M. Su, J.P. Kizito, Nucleate boiling heattransfer enhancement for water and FC-72 on titanium oxide and silicon oxide surfaces, Int. J. Heat Mass Transf., vol. 53, pp. 1773–1777, 2010.
  • E. Forrest, E. Williamson, J. Buongiorno, L.W. Hu, M. Rubner, R. Cohen, Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings, Int. J. Heat Mass Transf., vol. 53, pp. 58–67, 2010.
  • H. Jo, S. Kim, H. Kim, J. Kim, M.H. Kim, Nucleate boiling performance on nano/microstructures with different wetting surfaces, Nanoscale Res. Lett., vol. 7, pp. 1–9, 2012.
  • Y. Im, C. Dietz, S.S. Lee, Y. Joshi, Flower-like CuO nanostructures for enhanced boiling, Nanosc. Microsc. Therm., vol. 16, pp. 145–153, 2012.
  • A.K.M.M. Morshed, Titan C. Paul, Jamil Khan, Effect of Cu-Al2O3 nanocomposite coating on flow boiling performance of a microchannel, Appl. Therm. Eng., vol. 51, pp. 1135–1143, 2013.
  • Tae Il Kim, Won Joon Chang, Soon Heung Chang, Flow boiling CHF enhancement using Al2O3 nanofluid and an Al2O3 nanoparticle deposited tube, Int. J. Heat Mass Transfer, vol. 54, pp. 2021–2025, 2011.
  • C.S.Sujith Kumar, S. Suresh, Q. Yang, C.R. Aneesh, An experimental investigation on flow boiling heat transfer enhancement using spray pyrolysed alumina porous coatings, Appl. Therm. Eng., vol. 71, pp. 508–518, 2014.
  • S.M. Kwark, R. Kumar, G. Moreno, J. Yoo, S.M. You, Pool boiling characteristics of low concentration nanofluids, Int. J. Heat Mass Transf., vol. 53, pp. 972–981, 2010.
  • B. Karunagaran, R.T. Rajendra Kumar, V.S. Kumar, D. Mangalaraj, S.K. Narayandass, G.M. Rao, Structural characterization of DC magnetronsputtered TiO2 thin films using XRD and Raman scattering studies, Mater. Sci. Semicond. Process., vol. 6, pp. 547–550, 2003.
  • A. Bera, R. Thapa, K.K. Chattopadhyay, B. Saha, In plane conducting channel at the interface of CdO–znO isotype thin film heterostructure, J. Alloys Comp., vol. 632, pp. 343–347, 2015.
  • B. Saha, N.S. Das, K.K. Chattopadhyay, Combined effect of oxygen deficient point defects and Ni doping in radio frequency magnetron sputtering deposited ZnO thin films, Thin Solid Films, vol. 562, pp. 37–42, 2014.
  • C.M. Patil, K.S.V. Santhanam, S.G. Kandlikar, Development of a two-step electrodeposition process for enhancing pool boiling, Int. J. Heat Mass Transf., vol. 79, pp. 989–1001, 2014.
  • A. Ishii, Y. Nakamura, I. Oikawa, A. Kamegawa, H. Takamura, Low-temperature preparation of high-n TiO2 thin film on glass by pulsed laser deposition, Appl. Surf. Sci., vol. 347, pp. 528–534, 2015.
  • A.N. Kadam, R.S. Dhabbe, M.R. Kokate, Y.B. Gaikwad, K.M. Garadkar, Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of Malathion, Spectrochim. Acta Part A, vol. 133, pp. 669–676, 2014.
  • H.C. Shin, J. Dong, M. Liu, Nanoporous structures prepared by an electrochemical deposition process, Adv. Mater., vol. 15, pp. 1610–1614, 2003.
  • S.R. Allahkaram, S. Golroh, M. Mohammadalipour, Properties of Al2O3 nanoparticle reinforced copper matrix composite coatings prepared by pulse and direct current electroplating, Materials & Design, vol. 32 (8–9), pp. 4478–4484, 2011.
  • Q. Yu, X. Ma, M. Wang, C. Yu, T. Bai, Influence of embedded particles on microstructure, corrosion resistance and thermal conductivity of CuO/SiO2 and NiO/SiO2 nanocomposite coatings, Applied Surface Science, vol. 254 (16), pp. 5089–5094, 2008.
  • Y. Gan, D. Lee, X. Chen, J.W. Kysar, Structure and properties of electrocodeposited Cu-Al2O3 nanocomposite thin films, Journal of Engineering Materials and Technology, vol. 127 (4), pp. 451–456, 2005.
  • H.S. Ahn, V. Sathyamurthi, D. Banerjee, Pool boiling experiments on a nanostructured surface, IEEE Trans. Compon. Packag. Tech., vol. 32, pp. 156–162, 2009.
  • J.P. Holman, Experimental Methods for Engineers, seventh ed., Tata McGraw Hill Education Private Limited, India, 2007. ISBN: 9780070647763
  • J.H. Kim, Enhancement of pool boiling heat transfer using thermally conductive microporous coating techniques ( Ph.D. thesis), University of Texas at Arlington, TX, USA, 2006.
  • N.D. Nikolic, Fundamental aspects of copper electrodeposition in the hydrogen co-deposition range, Zastita Materijala, vol. 51, pp. 1970203, 2010.
  • W.M. Rohsenow, A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids, ASME 74, pp. 969–976, 1952.
  • S. Jun, H. Wi, A. Gurung, M. Amaya, S.M. You, Pool boiling heat transfer enhancement of water using brazed copper microporous coatings, Proc. Of 2015 ASME International Mechanical Engineering & Exposition, IMECE2015, IMECE- 52044, ASME Houston, Texas, USA, 2015.
  • P. Griffith, J.D. Wallis, The role of surface conditions in nucleate boiling, The Office of Naval Research, Technical report No. 14. 1–16, 1958.
  • R. Webb, The evolution of enhanced surface geometries for nucleate boiling, Heat Transf. Eng., vol. 2, pp. 46–69, 1981.
  • G. Li, B. Thomas, J. Stubbins, Modeling creep and fatigue of copper alloys, Metallurgical and Materials Transactions A, vol. 31(10), pp. 2491–2502, 2000.
  • X. Dai, F.Yang, R. Fang, T. Yemame, J.A. Khan, C. Li, Enhanced single- and two phase transport phenomena using flowseparation in a microgap with copper woven mesh coatings, Appl. Therm. Eng., vol. 54, pp. 281–288, 2013.
  • F. Yang, X. Dai, Y. Peles, P. Cheng, Li J. C. Khan, Flow boiling phenomena in a single annular flow regime in microchannels (I): characterization of flow boiling heat transfer, Int. J. Heat Mass Transf., vol. 68, pp. 703–715, 2014.
  • M.G. Cooper, A.J. Lloyd, The microlayer in nucleate pool boiling, Int. J. Heat Mass Transf., vol. 12, pp. 895–913, 1969. 103115.
  • Y. Nam, Y.S. Ju, Bubble nucleation on hydrophobic islands provides evidence to anomalously high contact angles of nanobubbles, Appl. Phys. Lett., vol. 93, 2008.
  • H.T. Phan, N. Caney, P. Marty, S. Colasson, J. Gavillet, Surface wettability control by nanocoating: the effect on pool boiling heat transfer and nucleation mechanism, Int. J. Heat and Mass Transf., vol. 52, pp. 5459–5471, 2009.
  • M.M. Rahman, E. Ölçeroğlu, M. Mccarthy, Role of wickability on the critical heat flux of structured superhydrophilic surfaces, Langmuir, vol. 30 (37), pp. 11225–11234, 2014.
  • W. Wu, H. Bostanci, L.C. Chow, Y. Hong, M. Su, J.P. Kizito, Nucleate boiling heat transfer enhancement for water and FC-72 on titanium oxide and silicon oxide surfaces, Int. J. Heat Mass Transf., vol. 53, pp. 1773–1777, 2010.
  • N. Zuber, Hydrodynamic aspects of boiling heat transfer, AEC Report AECU 4439, 1959.
  • S.G. Kandlikar, A Theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation, J. Heat Transfer, vol. 123, pp. 1071– 1079, 2001.
  • K.H. Chu, R. Enright, E.N. Wang, Structured surfaces for enhanced pool boiling heat transfer, Appl. Phys. Lett., vol. 100 (24), pp. 241603–241603–4, 2012.
  • M.-C. Lu, C.-H. Huang, C.-T. Huang, Y.-C. Chen, A modified hydrodynamic model for pool boiling CHF considering the effects of heater size and nucleation site density, Int. J. Therm. Sci., vol. 91, pp. 133–141, 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.