Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 32, 2019 - Issue 2
346
Views
19
CrossRef citations to date
0
Altmetric
Articles

Heat transfer and friction factor characteristic of spherical and inclined teardrop dimple channel subjected to forced convection

, &

References

  • V. N. Afanasyev, Y. P. Chudnovsky, A. I. Leontiev, and P. S. Roganov, “Turbulent flow friction and heat transfer characteristics for spherical cavities on a flat plate,” Exp. Thermal Fluid Sci., vol. 7, no. 1, pp.1–8, 1993. DOI: 10.1016/0894-1777(93)90075-T.
  • H. K. Moon, T. O’Connell, and B. Gletzer, “Channel height effect of heat transfer and friction in a dimpled passage,” ASME J. Eng. Gas Turbines Power, vol. 122, no. 2, pp.307–313, 2000. DOI: 10.1115/1.483208.
  • P. M. Ligrani, J. L. Harrison, G. I. Mahmood, and M. L. Hill, “Flow structure due to dimple depression on a channel surface,” Phys. Fluids, vol. 13, no. 11, pp.3442–3451, 2001. DOI: 10.1063/1.1404139.
  • G. I. Mahmood, et al., “Local heat transfer and flow structure on and above a dimpled surface in a Channel,” ASME J. Turbomach., vol. 123, no. 1, pp.115–123, 2001. DOI: 10.1115/1.1333694.
  • S. A. Isaev and A. I. Leontiev, “Numerical simulation of vortex enhancement of heat transfer under conditions of turbulent flow past a spherical dimple on the wall of a narrow channel,” High Temp., vol. 41, no. 5, pp.665–679, 2003. DOI: 10.1023/A:1026100913269.
  • R. S. Bunker and K. F. Donnellan, “Heat transfer and friction factors for flows inside circular tubes with concavity surfaces,” ASME J. Turbomach., vol. 125, no. 4, pp.665–672, 2003. DOI: 10.1115/1.1622713.
  • G. I. Mahmood and P. M. Ligrani, “Heat transfer in a dimpled channel: combined influences of aspect ratio, temperature ratio, reynolds number, and flow structure,” Int. J. Heat Mass Transf., vol. 45, no. 10, pp.2011–2020, 2002. DOI: 10.1016/S0017-9310(01)00314-3.
  • P. M. Ligrani, N. K. Burgess, and S. Y. Won, “Nusselt numbers and flow structure on and above a shallow dimpled surface within a channel, including the effects of inlet turbulence intensity level,” J. Turbomach., vol. 127, pp. 321–330, 2005. DOI: 10.1115/1.1861913.
  • Y. L. Lin, T. I. P. Shih, and M. K. Chyu, “Computations of flow and heat transfer in a channel with rows of hemispherical cavities,” ASME paper No. 99-GT-263, ASME 44th Intl. Gas Turbine and Aeroengine Congress and Exhibition, Indianapolis, Indiana, U.S.A, 1999.
  • A. I. Leontiev, N. A. Kiselev, S. A. Burtsev, M. M. Strongin, and Y. A. Vinogradov, “Experimental investigation of heat transfer and drag on surfaces with spherical dimples,” Exp. Thermal Fluid Sci., vol. 79, pp. 74–84, 2016. DOI: 10.1016/j.expthermflusci.2016.06.024.
  • J. Turnow, N. Kornav, N. Zhdanov, and E. Hassel, “Flow structures and heat transfer on dimples in a staggered arrangement,” Int. J. Heat Fluid Flow, vol. 35, pp. 168–175, 2012. DOI: 10.1016/j.ijheatfluidflow.2012.01.002.
  • N. K. Burgess and P. M. Ligrani, “Effects of dimple depth on channel Nusselt numbers and friction factors,” J. Heat. Transfer, vol. 127, no. 8, pp.839–847, 2005. DOI: 10.1115/1.1994880.
  • M. K. Chyu, Y. Yu, H. Ding, J. P. Downs, and F. Soechting, “Concavity enhanced heat transfer in an internal cooling passage,” ASME Paper No. 97-GT-437 ASME 42nd Intl. Gas Turbine and Aeroengine Congress and Exhibition, Orlando, Florida, U.S.A, 1997.
  • J. Park and P. M. Ligrani, “Numerical predictions of heat transfer and fluid flow characteristics for even different dimpled surfaces in a channel,” Numer. Heat Transfer, Part A, vol. 47, pp. 209–232, 2005. DOI: 10.1080/10407780590886304.
  • Y. Rao, T. Feng, and B. Li, “Heat transfer of turbulent flow over surfaces with spherical dimples and teardrop dimples,” Exp. Thermal Fluid Sci., vol. 61, no. 2, pp.201–209, 2014. DOI: 10.1016/j.expthermflusci.2014.10.030.
  • Y. Rao, T. Feng, B. Li, and B. Weigand, “Experimental and numerical study of heat transfer and flow friction in channels with dimples of different shapes,” ASME J. Heat Transfer, vol. 137, no. 3, pp.031901(1–10), 2015. DOI: 10.1115/1.4029036.
  • N. Katkhaw, et al. “The heat transfer behaviour of a flat plate having 45° ellipsoidal dimpled surfaces,” Case Stud. Thermal Eng., vol. 2, pp. 67–74, 2014. DOI: 10.1016/j.csite.2013.12.002.
  • N. Vorayos and N. Katkhaw, “Heat transfer behaviour of a flat plate having spherical dimpled surfaces,” Case Stud. Thermal Eng., vol. 8, pp. 370–377, 2016. DOI: 10.1016/j.csite.2016.09.004.
  • C. N. Jordan and L. M. Wright, “Heat transfer enhancement in a rectangular (AR = 3:1) channel with v-shaped dimples,” presented at ASME paper No. GT2011-46128, Pro. of ASME Turbo Expo, Vancouver British Columbia, Canada, 2011.
  • A. Kumar, R. Kumar, R. Chauhan, and R. Nadda, “Single phase thermal and hydraulic performance analysis of a V-pattern dimpled obstacles air passage,” Exp. Heat Transf., vol. 30, no. 5, pp.393–426, 2016. DOI: 10.1080/08916152.2016.1269139.
  • R. K. Ravi and R. P. Saini, “Effect of roughness elements on thermal and thermohydraulic performance of double pass solar air heater duct having discrete multi V-shaped and staggered rib roughness on both sides of the absorber plate,” Exp. Heat Transf., vol. 31, no. 1, pp.47–67, 2017. DOI: 10.1080/08916152.2017.1350217.
  • Y. Xie, H. Qu, and D. Zhang, “Numerical investigation of flow and heat transfer in a rectangular channel with teardrop dimple/protrusion,” Int. J. Heat Mass Transf., vol. 84, pp. 486–496, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.01.055.
  • T. M. Jeng, S. C. Tzeng, and Q. Y. Huang, “Heat transfer performance of the pin-fin heat sink filled with packed brass beads under a vertical oncoming flow,” Int. J. Heat Mass Transf., vol. 86, pp. 531–554, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.03.049.
  • O. B. Kanargi, P. S. Lee, and C. Yap, “A numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging-diverging channel heat sink,” Int. J. Heat Mass Transf., vol. 106, pp. 449–464, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.08.057.
  • F. Kreith and S. M. Bohn, Principles of Heat Transfer, United States of America: Cengage Learning, 2011.
  • S. J. Kline and F. A. McClintock, “Describing uncertainties in single sample experiments,” Mech. Eng., vol. 75, pp. 3–8, 1953.
  • C. Park and C. Silva, “Study of laminar forced convection heat transfer for dimpled heat sinks,” J. Thermophys. Heat Transf., vol. 22, no. 2, pp.262–270, 2008. DOI: 10.2514/1.33497.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.