Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 32, 2019 - Issue 3
161
Views
5
CrossRef citations to date
0
Altmetric
Articles

Influence of conduction heat loss on enhancing the heat transfer performance of a square flat plate with constant heat flux by an impinging jet in cross-flows

, , , &
Pages 219-238 | Received 31 Aug 2017, Accepted 21 Jun 2018, Published online: 01 Aug 2018

References

  • D. E. Metzger and R. J. Korstad, “Effects of cross-flow on impingement heat transfer,” Gas Turb. Power, vol. 94, pp. 35–42, 1972.
  • L. W. Florschuetz, C. R. Truman, and D. E. Metzger, “Stream-wise flow and heat transfer distributions for jet array impingement with cross-flow,” Heat Transf., vol. 103, pp. 337–342, 1981. DOI: 10.1115/1.3244463.
  • S. Harmand, J. Pelle, S. Poncet, and I. V. Shevchuk, “Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet,” Int. J. Therm. Sci., vol. 67, pp. 1–30, 2013. DOI: 10.1016/j.ijthermalsci.2012.11.009.
  • P. Gulati, V. Katti, and S. V. Prabhu, “Influence of the shape of the nozzle on local heat transfer distribution between smooth flat surface and impinging air jet,” Int. J.Therm. Sci., vol. 48, pp. 602–617, 2009. DOI: 10.1016/j.ijthermalsci.2008.05.002.
  • M. F. Koseoglu and S. Baskaya, “The role of jet inlet geometry in impinging jet heat transfer modeling and experiments,” Int. J. Therm. Sci., vol. 49, pp. 1417–1426, 2010. DOI: 10.1016/j.ijthermalsci.2010.02.009.
  • M. Kristiawan, A. Meslem, I. Nastase, and V. Sobolik, “Wall shear rates and mass transfer in impinging jets: comparison of circular convergent and cross-shaped orifice nozzles,” Int. J. Heat Mass Transf., vol. 55, pp. 282–293, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.09.014.
  • Y. Shan, J. Zhang, and G. Xie, “Convective heat Transfer for multiple rows of impinging air jets with small jet-to-jet spacing in semi-confined channel,” Int. J. Heat Mass Transf., vol. 286, pp. 832–842, 2015.
  • G. N. Li, Z. H. Xu, Y. Q. Zheng, W. W. Guo, and C. Dong, “Experimental study on convective heat transfer from a rectangular flat plate by multiple impinging jets in laminar cross flows,” Int. J. Therm. Sci., vol. 108, pp. 123–131, 2016. DOI: 10.1016/j.ijthermalsci.2016.05.006.
  • Y. Ichikawa, M. Motosuke, Y. Kameya, M. Yamamoto, and S. Honami, “Three-dimensional flow characterization of a square array of multiple circular impinging jets using stereoscopic PIV and heat transfer relation,” J. Vis., vol. 19, pp. 89–101, 2016. DOI: 10.1007/s12650-015-0296-8.
  • L. F. A. Azevedo, B. W. Webb, and M. Queiroz, “Pulsed air jet impingement heat transfer,” Exp. Heat Transf., vol. 8, pp. 206–213, 1994.
  • P. Xu, B. M. Yu, S. X. Qiu, H. J. Poh, and A. S. Mujumdar, “Turbulent impinging jet heat transfer enhancement due to intermittent pulsation,” Int. J. Therm. Sci., vol. 49, pp. 1247–1252, 2010. DOI: 10.1016/j.ijthermalsci.2010.01.020.
  • S. Alimohammadi, D. B. Murray, and T. Persoons, “On the numerical-experimental analysis and scaling of convective heat transfer to pulsating impinging jets,” Int. J. Therm. Sci., vol. 98, pp. 296–311, 2015. DOI: 10.1016/j.ijthermalsci.2015.07.022.
  • C. Nuntadusit, M. Wae-Hayee, A. Bunyajitradulya, and S. Eiamsa-Ard, “Visualization of flow And heat transfer characteristics for swirling impinging jet,” Int. Comm. Heat Mass Transf., vol. 39, pp. 640–648, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.03.002.
  • K. Nanan, K. Wongcharee, C. Nuntadusit, and S. Eiamsa-Ard, “Forced convective heat transfer by swirling impinging jets issuing from nozzles equipped with twisted tapes,” Int. Comm. Heat Mass Transf., vol. 39, pp. 844–852, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.05.002.
  • E. M. Sparrow, R. J. Goldstein, and M. A. Rouf, “Effect of nozzle-surface separation distance on impingement heat transfer for a jet in a cross-flow,” Heat Transf., vol. 97, pp. 528–533, 1975. DOI: 10.1115/1.3450423.
  • R. J. Goldstein and A. I. Behbahani, “Impingement of a circular jet with and without cross-flow,” Heat Mass. Transf., vol. 25, pp. 1377–1382, 1982. DOI: 10.1016/0017-9310(82)90131-4.
  • N. Zuckerman and N. Lior, “Jet impingement heat transfer: physics, Correlations and Numerical Modeling,” Adv. Heat Transf., vol. 39, pp. 565–631, 2006.
  • D. Rundstrom and B. Moshfegh, “Large-eddy simulation of an impinging jet in a cross-flow on a heated wall-mounted cube,” Int. J. Heat Mass Transf., vol. 52, pp. 921–931, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.03.035.
  • M. W. Heo, K. D. Lee, and K. Y. Kim, “Optimization of an inclined elliptic impinging jet with cross flow for enhancing heat transfer,” Heat Mass. Transf., vol. 47, pp. 731–742, 2011. DOI: 10.1007/s00231-011-0763-2.
  • G. N. Li, Y. Q. Zheng, G. L. Hu, and Z. G. Zhang, “Experiments on convection heat transfer enhancement of a rectangular flat plate by an impinging jet in cross flow,” Chin. J. Chem. Eng., vol. 22, pp. 489–495, 2014. DOI: 10.1016/S1004-9541(14)60060-4.
  • V. Katti and S. V. Prabhu, “Influence of streamwise pitch on the local heat transfer characteristics for in-line arrays of circular jets with cross-flow of spent air in one direction,” Heat Mass. Transf., vol. 45, pp. 1167–1184, 2009. DOI: 10.1007/s00231-009-0491-z.
  • J. Lee, et al., “Cross-flow effects on impingement array heat transfer with varying jet-to-target plate distance and hole spacing,” Int. J. Heat Mass Transf., vol. 75, pp. 534–544, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.040.
  • S. A. Nada, “Buoyancy and cross flow effects on heat transfer of multiple impinging slot air jets cooling a flat plate at different orientations,” Heat Mass Transf., vol. 45, pp. 1083–1097, 2009. DOI: 10.1007/s00231-009-0480-2.
  • X. L. Wang, J. H. Lee, T. J. Lu, S. J. Song, and T. Kim, “A comparative study of single-/two-jet cross-flow heat transfer on a circular cylinder,” Int. J. Heat Mass Transf., vol. 78, pp. 588–598, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.014.
  • L. Wang, B. Sundén, A. Borg, and H. Abrahamsson, “Control of jet impingement heat transfer in crossflow by using a rib,” Int. J. Heat Mass Transf., vol. 54, pp. 4157–4166, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.06.004.
  • L. Wang, B. Sundén, A. Borg, and H. Abrahamsson, “Heat transfer characteristics of an impinging jet in cross-flow[J],” J. Heat Transf., vol. 133, pp. 2543–2549, 2011. DOI: 10.1115/1.4004527.
  • C. Wang, L. Wang, and B. Sundén, “A novel control of jet impingement heat transfer in cross-flow by a vortex generator pair,” Int. J. Heat Mass Transf., vol. 88, pp. 82–90, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.04.056.
  • M. Chaudhari, B. Puranik, and A. Agrawal, “Heat transfer analysis in a rectangular duct without and with cross-flow and an impinging synthetic jet,” IEEE Trans. Components Packag. Technol., vol. 2, pp. 488–497, 2010. DOI: 10.1109/TCAPT.2010.2042716.
  • G. Choi, B. S. Kim, H. Lee, S. Shin, and H. H. Cho, “Jet impingement in a cross-flow configuration: convective boiling and local heat transfer characteristics,” Int. J. Heat Fluid Flow, vol. 50, pp. 378–385, 2014. DOI: 10.1016/j.ijheatfluidflow.2014.09.010.
  • E. Cuce, C. H. Young, and S. B. Riffat, “Thermal performance investigation of heat insulation solar glass: a comparative experimental study,” Energ. Bldg., vol. 86, pp. 596–600, 2015.
  • J. P. Holman, Heat Transfer, tenth ed. U.S.A: Mc Graw Hill, 2008.
  • R. M. Kelso and T. T. Lim, “New experimental observations of vertical motions in transverse jets,” Phys. Fluids, vol. 10, pp. 2427–2429, 1998. DOI: 10.1063/1.869761.
  • L. L. Yuan, R. L. Street, and J. H. Ferziger, “Large-eddy simulations of a round jet in crossflow,” J. Fluid Mech., vol. 379, pp. 71–104, 1999. DOI: 10.1017/S0022112098003346.
  • S. H. Smith and M. G. Mungal, “Mixing, structure and scaling of the jet in crossflow,” J. Fluid Mech., vol. 357, pp. 83–122, 1998. DOI: 10.1017/S0022112097007891.
  • M. Gordon and J. Soria, “PIV measurements of a zero-net-mass-flux jet in cross flow,” Exp. Fluids, vol. 33, pp. 863–872, 2002. DOI: 10.1007/s00348-002-0518-4.
  • L. L. Yuan and R. L. Street, “Trajectory and entrainment of a round jet in crossflow,” Phys. Fluids, vol. 10, pp. 2323–2335, 1998. DOI: 10.1063/1.869751.
  • R. J. Margason, Fifty Years of Jet in Cross-Flow Research, In: Computational and Experimental Assessment of Jets in Cross-Flow, Winchester. UK: National Aeronautics and Space Administration of U.S.A. 1992. 34–75.
  • A. R. Karagozian, Background on and Applications of Jets in Cross-Flow, In: Manipulation and Control of Jets in Cross-Flow, Vol. 1, Udine, Italy: Springer Wien, New York. 2013. 3–13.
  • S. Y. No, “Empirical correlations for breakup length of liquid jet in uniform cross flow – a review,” Korea Inst. Liq. Atomization, vol. 18, pp. 35–43, 2013.
  • G. N. Li, Y. Q. Zheng, H. W. Yang, W. W. Guo, and Y. S. Xu, “Lattice Boltzmann simulation of a laminar square jet in cross flows,” Chin. J. Chem. Eng., vol. 24, pp. 1505–1512, 2016.
  • S. Muppidi and K. Mahesh, “Direct numerical simulation of round turbulent jets in crossflow,” J. Fluid Mech., vol. 574, pp. 59–84, 2007. DOI: 10.1017/S0022112006004034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.