Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 32, 2019 - Issue 3
1,476
Views
5
CrossRef citations to date
0
Altmetric
Articles

An experimental study on the intense heat transfer and phase change during melt and water interactions

, , &
Pages 251-266 | Received 12 Mar 2018, Accepted 23 Jul 2018, Published online: 22 Aug 2018

References

  • L. Manickam, P. Kudinov, W. Ma, S. Bechta, and D. Grischenkov, “On the influence of water subcooling and melt jet parameters on debris formation,” Nucl. Eng. Des., vol. 309, pp. 265–276, 2016.
  • H. S. Park, R. C. Hannson, and B. R. Sehgal, “Fine fragmentation of molten droplet in highly subcooled water due to vapor explosion observed by X-ray radiography,” Exp. Thermal Fluid Sci., vol. 29, pp. 351–361, 2005.
  • I. Huhtiniemi and D. Magallon, “Insight into steam explosions with corium melts in KROTOS,” Nucl. Eng. Des., vol. 204, pp. 391–400, 2001.
  • J. H. Song, J. H. Kim, S. W. Hong, B. T. Min, and H. D. Kim, “The effect of corium composition and interaction vessel geometry on the prototypic steam explosion,” Ann. Nucl. Energy, vol. 33, pp. 1437–1451, 2006.
  • Y. Abe, H. Nariai, and Y. Hamada, “The trigger mechanism of vapor explosion,” J. Nucl. Sci. Technol., vol. 39, pp. 845–853, 2002.
  • R. C. Hannson, H. S. Park, and T. N. Dinh, “Simultaneous high-speed digital cinematographic and X-ray radiographic imaging of an intense multi-fluid interaction with rapid phase changes,” Exp. Thermal Fluid Sci., vol. 33, pp. 754–763, 2009.
  • R. C. Hannson, T. N. Dinh, and L. Manickam, “A study of the effect of binary oxide materials in a single droplet vapor explosion,” Nucl. Eng. Des., vol. 264, pp. 168–175, 2013.
  • P. Kudinov, A. Karbojian, W. Ma, and T. N. Dinh, “The DEFOR-S experimental study of debris formation with corium simulant materials,” Nucl. Technol., vol. 170, pp. 219–230, 2010.
  • C. Journeau, “PLINIUS FP6 transnational access to the prototypic corium platform PLINIUS,” Research Report of EURATOM 6th Framework Programme, Contract Number FP6-036403. Cadarache, France, 2010.
  • E. Matsuo, Y. Abe, K. Chitose, K. Koyama, and K. Itoh, “Study on jet breakup behavior at core disruptive accident for fast breeder reactor,” Nucl. Eng. Des., vol. 238, pp. 1996–2004, 2008.
  • G. Ciccarelli and D. L. Frost, “Fragmentation mechanisms based on single drop steam explosion experiments using flash X-ray radiography,” Nucl. Eng. Des., vol. 146, pp. 109–132, 1994.
  • M. L. Corradini and B. J. Kim, “Modeling of small-scale single droplet fuel coolant interactions,” Nucl. Sci. Eng., vol. 98, pp. 16–28, 1988.
  • L. Manickam, S. Bechta, and W. Ma, “On the fragmentation characteristics of melt jets quenched in water,” Int. J. Multiphase Flow, vol. 91, pp. 262–275, 2017.
  • J. Tang and M. L. Corradini, Modeling of the Complete Process of One-Dimensional Vapor Explosions, Madison: University of Wisconsin, 1993.
  • X. Cao, Y. Tobita, and S. Kondo, “A thermal fragmentation model induced by surface solidification,” J. Nucl. Sci. Technol., vol. 39, pp. 628–636, 2002.
  • E. Kouraytem, Q. Li, and S. T. Thoroddsen, “Formation of microbeads during vapor explosion of fields metal in water,” Phys. Rev. E, vol. 93, pp. 1–6, 2016.
  • B. E. Gelfand, “Droplet breakup phenomena in flows with velocity lag,” Prog. Energy Combustion Sci., vol. 22, pp. 201–265, 1996.
  • L. S. Nelson, et al., “Steam explosions of single drops of molten silicon rich alloys,”. Proceedings of the Ninth International Ferro alloys Congress (INFACON 9), Quebec City, June 3–6, 2001.