Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 32, 2019 - Issue 4
112
Views
5
CrossRef citations to date
0
Altmetric
Articles

Relationship of nanostructure and thermo-chemical response/thermal ablation of carbon aerogels

, &
Pages 303-321 | Received 31 May 2018, Accepted 15 Aug 2018, Published online: 10 Sep 2018

References

  • A. Allahbakhsh and A. R. Bahramian, “Self-assembled and pyrolyzed carbon aerogels: an overview of their preparation mechanisms, properties and applications,” Nanoscale, vol. 7, pp. 14139–14158, 2015. DOI: 10.1039/c5nr03855c.
  • M. Khairul Alam and B. Maruyama, “Thermal conductivity of graphitic carbon foams,” Exp Heat Transfer, vol. 17, pp. 227–241, 2004. DOI: 10.1080/08916150490449055.
  • M. Wiener, G. Reichenauer, S. Braxmeier, F. Hemberger, and H. P. Ebert, “Carbon aerogel-based high-temperature thermal insulation,” Int J Thermophys, vol. 30, pp. 1372–1385, 2009. DOI: 10.1007/s10765-009-0595-1.
  • L.-F. Cai, et al., “Structure control of powdery carbon aerogels and their use in high-voltage aqueous supercapacitors,” Carbon, vol. 130, pp. 847, 2018. DOI: 10.1016/j.carbon.2017.12.088.
  • N. Chandrasekaran, V. Premkumar, S. M. S. Kumar, and R. Ram, “Single-step rapid synthesis of monolithic mesoporous carbon/graphene aerogels with improved double layer capacitance,” New J Chem, vol. 42, pp. 7371–7376, 2018. DOI: 10.1039/C7NJ05077A.
  • J. Biener, et al., “Advanced carbon aerogels for energy applications,” Energy Environ Sci, vol. 4, pp. 656–667, 2011. DOI: 10.1039/c0ee00627k.
  • F. Xu, et al., “Fabrication of novel powdery carbon aerogels with high surface areas for superior energy storage,” Energy Storage Materials, vol. 7, pp. 8–16, 2017. DOI: 10.1016/j.ensm.2016.11.002.
  • A. Seifi, A. R. Bahramian, and A. Sharif, “Correlation between structure and oxidation behavior of carbon aerogels,” J Energy Storage, vol. 7, pp. 195–203, 2016. DOI: 10.1016/j.est.2016.07.003.
  • T. Yin, et al., “Modeling ablative behavior and thermal response of carbon/carbon composites,” Computational Mater Sci, vol. 95, pp. 35–40, 2014. DOI: 10.1016/j.commatsci.2014.07.013.
  • M. Wang and W. Zhu, “Pore-scale study of heterogeneous chemical reaction for ablation of carbon fibers using the lattice Boltzmann method,” Int J Heat Mass Transf, vol. 126, pp. 1222–1239, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.133.
  • Y. I. Dimitrienko and I. D. Dimitrienko, “Effect of thermomechanical erosion on heterogeneous combustion of composite materials in high-speed flows,” Combust Flame, vol. 122, pp. 211–226, 2000. DOI: 10.1016/S0010-2180(00)00124-3.
  • B. Zhang and X. Li, “Numerical simulation of thermal response and ablation behavior of a hybrid carbon/carbon composite,” Appl Composite Mater, vol. 25, No. 3, pp. 675–688, 2018.
  • A. Seifi, A. R. Bahramian, and A. Sharif, “Thermal oxidation process of in-situ silicon carbide incorporated carbon aerogel, experimental and kinetic study,” Corrosion Sci, vol. 142, pp. 175-184 2018. DOI: 10.1016/j.corsci.2018.07.022.
  • N. S. Ghafoorian, A. R. Bahramian, and M. M. Seraji, “Investigation of the effect of rice husk derived Si/SiC on the morphology and thermal stability of carbon composite aerogels,” Mater Des, vol. 86, pp. 279–288, 2015. DOI: 10.1016/j.matdes.2015.07.093.
  • I. Naseri, A. Kazemi, A. R. Bahramian, and M. Razzaghi Kashani, “Preparation of organic and carbon xerogels using high-temperature-pressure sol-gel polymerization,” Mater Des, vol. 61, pp. 35–40, 2014. DOI: 10.1016/j.matdes.2014.04.061.
  • A. Hajizadeh, A. R. Bahramian, A. Seifi, and I. Naseri, “Effect of initial sol concentration on the microstructure and morphology of carbon aerogels,” J Sol-Gel Sci Technol, vol. 73, pp. 220–226, 2015. DOI: 10.1007/s10971-014-3520-4.
  • A. Dinker, M. Agarwal, and G. Agarwal, “Preparation, characterization, and performance study of beeswax/expanded graphite composite as thermal storage material,” Exp Heat Transfer, vol. 30, pp. 139–150, 2017. DOI: 10.1080/08916152.2016.1185198.
  • D. Gaona, E. Urresta, J. Marínez, and G. Guerrón, “Medium-temperature phase-change materials thermal characterization by the T-History method and differential scanning calorimetry,” Exp Heat Transfer, vol. 30, pp. 463–474, 2017. DOI: 10.1080/08916152.2017.1286413.
  • T. R. Marrero and E. A. Mason, “Gaseous diffusion coefficients,” J Phys Chem Reference Data, vol. 1, pp. 3–118, 1972. DOI: 10.1063/1.3253094.
  • E. L. Cussler. Diffusion: Mass Transfer in Fluid Systems, Cambridge university press, Esfand, Universitry of Minnesota, Second Edition, 2009.
  • S. Vyazovkin, “Computational aspects of kinetic analysis.: part C. The ICTAC Kinetics Project - the light at the end of the tunnel?” Thermochim Acta, vol. 355, pp. 155–163, 2000. DOI: 10.1016/S0040-6031(00)00445-7.
  • S. Vyazovkin and N. Sbirrazzuoli, “Isoconversional kinetic analysis of thermally stimulated processes in polymers,” Macromol Rapid Commun, vol. 27, pp. 1515–1532, 2006. DOI: 10.1002/(ISSN)1521-3927.
  • J. Sempere, R. Nomen, and R. Serra, “Progress in non-parametric kinetics,” J Therm Anal Calorim, vol. 56, pp. 843–849, 1999. DOI: 10.1023/A:1010178827890.
  • J. Sempere, R. Nomen, R. Serra, and J. Soravilla, “The NPK method: an innovative approach for kinetic analysis of data from thermal analysis and calorimetry,” Thermochim Acta, vol. 388, pp. 407–414, 2002. DOI: 10.1016/S0040-6031(02)00037-0.
  • R. Serra, R. Nomen, and J. Sempere, “The non-parametric kinetics a new method for the kinetic study of thermoanalytical data,” J Therm Anal Calorim, vol. 52, pp. 933–943, 1998. DOI: 10.1023/A:1010120203389.
  • R. Serra, J. Sempere, and R. Nomen, “A new method for the kinetic study of thermoanalytical data:: the non-parametric kinetics method,” Thermochim Acta, vol. 316, pp. 37–45, 1998. DOI: 10.1016/S0040-6031(98)00295-0.
  • J. Šesták and G. Berggren, “Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures,” Thermochim Acta, vol. 3, pp. 1–12, 1971. DOI: 10.1016/0040-6031(71)85051-7.
  • W. M. Kays, M. E. Crawford, and B. Weigand. Convective Heat and Mass Transfer, Tata McGraw-Hill Education India, India Higher Education, 4th edition, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.