Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 32, 2019 - Issue 4
321
Views
11
CrossRef citations to date
0
Altmetric
Articles

Application of TiO2 nanofluid-based coolant for jet impingement quenching of a hot steel plate

, , , , &
Pages 322-336 | Received 30 May 2018, Accepted 24 Aug 2018, Published online: 10 Sep 2018

References

  • R.-M. Guo, Heat Transfer of Laminar Flow Cooling during Strip Acceleration on Hot Strip Mill Runout Tables, Trans. ISS-AIME, vol. 8, pp. 49–59, 1993.
  • J. D. Bernardin and I. Mudawar, “Film boiling heat transfer of droplet streams and sprays,” Int. J. Heat Mass Transf., vol. 40, no. 11, pp.2579–2593, 1997. DOI: 10.1016/S0017-9310(96)00297-9.
  • N. Mebarki, D. Delagnes, P. Lamesle, F. Delmas, and C. Levaillant, “Relationship between microstructure and mechanical properties of a 5% Cr tempered martensitic tool steel,” Mater. Sci. Eng. A, vol. 387-389, pp. 171–175, 2004. DOI: 10.1016/j.msea.2004.02.073.
  • Z. X. Qiao, Y. C. Liu, L. M. Yu, and Z. M. Gao, “Effect of cooling rate on microstructural formation and hardness of 30CrNi3Mo steel,” Appl. Phys. A, vol. 95, no. 3, pp.917–922, 2009. DOI: 10.1007/s00339-009-5099-0.
  • Z. Nishiyama, In: Martensitic Transformation. Elsevier Science, 2012.
  • S. V. Ravikumar, J. M. Jha, S. S. Mohapatra, S. K. Pal, and S. Chakraborty, “Influence of ultrafast cooling on microstructure and mechanical properties of steel,” Steel Res. Int., vol. 84, no. 11, pp.1157–1170, 2013. DOI: 10.1002/srin.v84.11.
  • S. S. Mohapatra, et al., “Ultra fast cooling and its effect on the mechanical properties of steel,” J. Heat Transfer, vol. 136, no. 3, pp.032101–032101-032109, 2013. DOI: 10.1115/1.4025638.
  • S. V. Ravikumar, J. M. Jha, S. S. Mohapatra, S. K. Pal, and S. Chakraborty, “Experimental investigation of effect of different types of surfactants and jet height on cooling of a hot steel plate,” J. Heat Transfer, vol. 136, no. 7, pp.072102–072102-072110, 2014. DOI: 10.1115/1.4027182.
  • S. S. Mohapatra, J. M. Jha, K. Srinath, S. K. Pal, and S. Chakraborty, “Enhancement of cooling rate for a hot steel plate using air-atomized spray with surfactant-added water,” Exp. Heat Transfer, vol. 27, no. 1, pp.72–90, 2014. DOI: 10.1080/08916152.2012.719068.
  • S. V. Ravikumar, J. M. Jha, I. Sarkar, S. K. Pal, and S. Chakraborty, “Mixed-surfactant additives for enhancement of air-atomized spray cooling of a hot steel plate,” Exp. Thermal Fluid Sci., vol. 55, no. SupplementC, pp.210–220, 2014. DOI: 10.1016/j.expthermflusci.2014.03.007.
  • S. V. Ravikumar, J. M. Jha, I. Sarkar, S. K. Pal, and S. Chakraborty, “Enhancement of heat transfer rate in air-atomized spray cooling of a hot steel plate by using an aqueous solution of non-ionic surfactant and ethanol,” Appl. Thermal Eng., vol. 64, no. 1, pp.64–75, 2014. DOI: 10.1016/j.applthermaleng.2013.12.008.
  • S. V. Ravikumar, J. M. Jha, A. M. Tiara, S. K. Pal, and S. Chakraborty, “Experimental investigation of air-atomized spray with aqueous polymer additive for high heat flux applications,” Int. J. Heat Mass Transf., vol. 72, pp. 362–377, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.01.024.
  • G. Puliti, S. Paolucci, and M. Sen, “Nanofluids and their properties,” Appl. Mechanics Rev., vol. 64, no. 3, pp.030803–030803-030823, 2012. DOI: 10.1115/1.4005492.
  • S. K. Das, S. U. S. Choi, and H. E. Patel, “Heat transfer in nanofluids—a review,” Heat Transfer Eng., vol. 27, no. 10, pp.3–19, 2006. DOI: 10.1080/01457630600904593.
  • S. V. Ravikumar, J. M. Jha, K. Haldar, S. K. Pal, and S. Chakraborty, “Surfactant-based Cu–water nanofluid spray for heat transfer enhancement of high temperature steel surface,” J. Heat Transfer, vol. 137, no. 5, pp.051504–051504-051508, 2015. DOI: 10.1115/1.4029815.
  • J. M. Jha, et al., “Ultrafast cooling of a hot moving steel plate by using alumina nanofluid based air atomized spray impingement,” Appl. Thermal Eng., vol. 75, pp. 738–747, 2015. DOI: 10.1016/j.applthermaleng.2014.10.005.
  • S. Chakraborty, et al., “Application of water based-TiO2 nano-fluid for cooling of hot steel plate,” ISIJ Int., vol. 50, no. 1, pp.124–127, 2010. DOI: 10.2355/isijinternational.50.124.
  • C. Tam Nguyen, G. Roy, C. Gauthier, and N. Galanis, Heat Transfer Enhancement Using Al2O3 - H2O Nanofluid for an Electronic Liquid Cooling System, Applied Thermal Engineering, vol. 27, no. 8–9, pp. 1501–1506, 2007.
  • T. Yousefi, E. Shojaeizadeh, H. R. Mirbagheri, B. Farahbaksh, and M. Z. Saghir, “An experimental investigation on the impingement of a planar jet of Al2O3–water nanofluid on a V-shaped plate,” Exp. Thermal Fluid Sci., vol. 50, pp. 114–126, 2013. DOI: 10.1016/j.expthermflusci.2013.05.011.
  • S. Mitra, S. K. Saha, S. Chakraborty, and S. Das, “Study on boiling heat transfer of water–tiO2 and water–MWCNT nanofluids based laminar jet impingement on heated steel surface,” Appl. Thermal Eng., vol. 37, pp. 353–359, 2012. DOI: 10.1016/j.applthermaleng.2011.11.048.
  • T. R. Barrett, S. Robinson, K. Flinders, A. Sergis, and Y. Hardalupas, “Investigating the use of nanofluids to improve high heat flux cooling systems,” Fusion Eng. Des., vol. 88, no. 9, pp.2594–2597, 2013. DOI: 10.1016/j.fusengdes.2013.03.058.
  • A. A. Tseng, H. Bellerová, M. Pohanka, and M. Raudensky, “Effects of titania nanoparticles on heat transfer performance of spray cooling with full cone nozzle,” Appl. Thermal Eng., vol. 62, no. 1, pp.20–27, 2014. DOI: 10.1016/j.applthermaleng.2013.07.023.
  • R. Saleh, N. Putra, R. E. Wibowo, W. N. Septiadi, and S. P. Prakoso, “Titanium dioxide nanofluids for heat transfer applications,” Exp. Thermal Fluid Sci., vol. 52, pp. 19–29, 2014. DOI: 10.1016/j.expthermflusci.2013.08.018.
  • S. Chakraborty, I. Sarkar, D. K. Behera, S. K. Pal, and S. Chakraborty, “Experimental investigation on the effect of dispersant addition on thermal and rheological characteristics of TiO2 nanofluid,” Powder Technol., vol. 307, pp. 10–24, 2017. DOI: 10.1016/j.powtec.2016.11.016.
  • P. L. du Noüy, “A new apparatus for measuring surface tension,” J. Gen. Physiol., vol. 1, pp. 521–524, 1919.
  • W. D. Harkins and H. F. Jordan, “A method for the determination of surface and interfacial tension from the maximum pull on a ring,” J. Am. Chem. Soc., vol. 52, no. 5, pp.1751–1772, 1930. DOI: 10.1021/ja01368a004.
  • S. V. Ravikumar, et al., “Achievement of ultrafast cooling rate in a hot steel plate by air-atomized spray with different surfactant additives,” Exp. Thermal Fluid Sci., vol. 50, pp. 79–89, 2013. DOI: 10.1016/j.expthermflusci.2013.05.007.
  • I. Sarkar, D. K. Behera, J. M. Jha, S. K. Pal, and S. Chakraborty, “Effect of polymer additive on the cooling rate of a hot steel plate by using water jet,” Exp. Thermal Fluid Sci., vol. 70, no. SupplementC, pp.105–114, 2016. DOI: 10.1016/j.expthermflusci.2015.08.012.
  • H. Schonhorn, “Theoretical relationship between surface tension and cohesive energy density,” J. Chem. Phys., vol. 43, no. 6, pp.2041–2043, 1965. DOI: 10.1063/1.1697071.
  • P. Becher, “The calculation of cohesive energy density from the surface tension of liquids,” J. Colloid Interface Sci., vol. 38, no. 2, pp.291–293, 1972. DOI: 10.1016/0021-9797(72)90245-7.
  • I. Vavruca, “On the determination of the factor between cohesive energy density and surface tension,” J. Colloid Interface Sci., vol. 63, no. 3, pp.600–601, 1978. DOI: 10.1016/S0021-9797(78)80022-8.
  • S. M. S. Murshed, T. Say-Hwa, and N. Nam-Trung, “Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics,” J. Phys. D Appl. Phys., vol. 41, no. 8, pp.085502, 2008. DOI: 10.1088/0022-3727/41/8/085502.
  • V. Saeid, P. Arup, J. Abhishek, R. Ganapathiraman, and B.-T. Theodorian, “The effect of nanoparticles on the liquid–gas surface tension of Bi 2 Te 3 nanofluids,” Nanotechnol., vol. 20, no. 18, pp.185702, 2009. DOI: 10.1088/0957-4484/20/18/185702.
  • S. Tanvir and L. Qiao, “Surface tension of nanofluid-type fuels containing suspended nanomaterials,” Nanoscale Res. Lett., vol. 7, no. 1, pp.226, 2012. DOI: 10.1186/1556-276X-7-226.
  • B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Exp. Heat Transfer, vol. 11, no. 2, pp.151–170, 1998. DOI: 10.1080/08916159808946559.
  • W. Evans, et al., “Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids,” Int. J. Heat Mass Transf., vol. 51, no. 5, pp.1431–1438, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.10.017.
  • Y. Feng, B. Yu, P. Xu, and M. Zou, The Effective Thermal Conductivity of Nanofluids Based on the Nanolayer and the Aggregation of Nanoparticles, Journal of Physics D: Applied Physics, vol. 40, no. 10, 2007.
  • M. M. Ghosh, S. Ghosh, and S. K. Pabi, “Effects of particle shape and fluid temperature on heat-transfer characteristics of nanofluids,” J. Mater. Eng. Perform., vol. 22, no. 6, pp.1525–1529, 2013. DOI: 10.1007/s11665-012-0441-7.
  • I. Sarkar, S. Chakraborty, J. M. Jha, S. K. Pal, and S. Chakraborty, “Ultrafast cooling of a hot steel plate using Cu-Al layered double hydroxide nanofluid jet,” Int. J. Thermal Sci., vol. 116, no. SupplementC, pp.52–62, 2017. DOI: 10.1016/j.ijthermalsci.2017.02.009.
  • L. Fedele, L. Colla, and S. Bobbo, Viscosity and Thermal Conductivity Measurements of Water-Based Nanofluids Containing Titanium Oxide Nanoparticles, International Journal of Refrigeration., vol. 35, no. 5, pp. 1359–1366, 2012.
  • D. I. Li and M. A. Wells, “Effect of subsurface thermocouple installation on the discrepancy of the measured thermal history and predicted surface heat flux during a quench operation,” Metallurgical Mater. Trans. B, vol. 36, no. 3, pp.343–354, 2005. DOI: 10.1007/s11663-005-0064-6.
  • D. M. Trujillo and H. R. Busby, Practical Inverse Analysis in Engineering. CRC Press, 1997, pp. 235.
  • S. S. Mohapatra, S. Chakraborty, and S. K. Pal, “Experimental studies on different cooling processes to achieve ultra-fast cooling rate for hot steel plate,” Exp. Heat Transfer, vol. 25, no. 2, pp.111–126, 2012. DOI: 10.1080/08916152.2011.582567.
  • R. J. Benjamin and A. R. Balakrishnan, “Nucleation site density in pool boiling of saturated pure liquids: Effect of surface microroughness and surface and liquid physical properties,” Exp. Thermal Fluid Sci., vol. 15, no. 1, pp.32–42, 1997. DOI: 10.1016/S0894-1777(96)00168-9.
  • S. J. Kim, I. C. Bang, J. Buongiorno, and L. W. Hu, “Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux,” Int. J. Heat Mass Tran., vol. 50, 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.02.002.
  • J. M. Jha, S. V. Ravikumar, I. Sarkar, S. K. Pal, and S. Chakraborty, “Ultrafast cooling processes with surfactant additive for hot moving steel plate,” Exp. Thermal Fluid Sci., vol. 68, pp. 135–144, 2015. DOI: 10.1016/j.expthermflusci.2015.04.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.