Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 32, 2019 - Issue 4
140
Views
17
CrossRef citations to date
0
Altmetric
Articles

Experimental quantification of natural convective heat transfer within annulus space filled with a H2O-Cu nanofluid saturated porous medium. Application to electronics cooling

ORCID Icon &
Pages 364-375 | Received 21 Jun 2018, Accepted 14 Sep 2018, Published online: 16 Oct 2018

References

  • E. Abu-Nada, “Simulation of heat transfer enhancement in nanofluids using dissipative particle dynamics,” Int. Com. Heat Mass. Transfer, vol. 85, pp. 1–11, 2017. DOI: 10.1016/j.icheatmasstransfer.2017.04.008.
  • M. Modak, A. K. Sharma, and S. K. Sahu, “An experimental investigation on heat transfer enhancement in circular jet impingement on hot surfaces by using Al2O3/water nano-fluids and aqueous high-alcohol surfactant solution,” Exp Heat Transf, vol. 31, no. 4, pp.275–296, 2018. DOI: 10.1080/08916152.2017.1381655.
  • T. Basak and A. J. Chamkha, “Heatline analysis on natural convection for nanofluids confined within square cavities with various thermal boundary conditions,” Int J Heat Mass Transf, vol. 55, pp. 5526–5543, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.05.025.
  • A. J. Chamkha and A. M. Rashad, “Natural convection from a vertical permeable cone in nanofluid saturated porous media for uniform heat and nanoparticles volume fraction fluxes,” Int. J. Numer. Methods Heat Fluid Flow, vol. 22, no. 8, pp.1073–1085, 2012. DOI: 10.1108/09615531211271871.
  • A. Sözen, M. Gürü, T. Menlik, U. Karakaya, and E. Çiftçi, “Experimental comparison of Triton X-100 and sodium dodecyl benzene sulfonate surfactants on thermal performance of TiO2–deionized water nanofluid in a thermosiphon,” Exp Heat Transfer, vol. 31, no. 5, pp.450–469, 2018. DOI: 10.1080/08916152.2018.1445673.
  • M. Sheremet, I. Pop, H. F. Öztop, and N. Abu-Hamdeh, “Natural convection of nanofluid inside a wavy cavity with a non-uniform heating: entropy generation analysis,” Int. J. Num. Meth. Heat Fluid Flow, vol. 27, no. 4, pp.958–980, 2017. DOI: 10.1108/HFF-02-2016-0063.
  • S. A. Atouei, Kh. Hosseinzadeh, M. Hatami, S.E. Ghasemi, S.A.R. Sahebib, D.D. Ganji, “Heat transfer study on convective–radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods,” Appl. Thermal Eng., vol. 89, pp. 299–305, 2015. DOI: 10.1016/j.applthermaleng.2015.05.084.
  • M. Sheikholeslami, “CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion,” J Mol Liq, vol. 249, pp. 921–929, 2018. DOI: 10.1016/j.molliq.2017.11.118.
  • S. S. Ghadikolaei, K. Hosseinzadeh, D. D. Ganji, and M. Hatami, “Fe3O4–(CH2OH)2 nanofluid analysis in a porous medium under MHD radiative boundary layer and dusty fluid,” J Mol Liq, vol. 258, pp. 172–185, 2018. DOI: 10.1016/j.molliq.2018.02.106.
  • M. Hedayati-Dezfooli and W. H. Leong, “Experimental evaluation of the measurement errors of soil water content due to interference of two adjacent TDR probes,” Experimental Heat Transfer, vol. 30, no. 5, pp.475–488, 2017. DOI: 10.1080/08916152.2017.1315468.
  • O. Haddad, A. Baïri, N. Alilat, J.-G. Bauzin, and N. Laraqi, “Free convection in ZnO nanofluid-filled and tilted hemispherical enclosures containing a cubic electronic device,” International Communications Heat Mass. Transfer, vol. 87, pp. 204–211, 2017. DOI: 10.1016/j.icheatmasstransfer.2017.06.011.
  • A. Baïri, O. Haddad, and N. Alilat, “Nu-Ra-Pr correlations for nanofluidic natural convection in tilted hemispherical enclosures with active disk,” Numerical Heat Transfer, vol. 71, no. 11, pp.1094–1103, 2017. DOI: 10.1080/10407782.2017.1337985.
  • A. Baïri, “Natural convection between concentric and inclined hemispherical cavities filled with Cu-water nanofluid,” J Mol Liq, vol. 249, pp. 1263–1270, 2018. DOI: 10.1016/j.molliq.2017.11.079.
  • A. Baïri, N. Laraqi, and K. Adeyeye, “Thermal behavior of an active electronic dome contained in a tilted hemispherical enclosure and subjected to nanofluidic Cu-water free convection,” Eur. Phys. J. Plus, vol. 133, pp. 93–103, 2018. DOI: 10.1140/epjp/i2018-11914-3.
  • Baïri, J. G. Bauzin, A. Martín-Garín, N. Alilat, and J. A. Millán-García, “Natural convective cooling of electronics contained in tilted hemispherical enclosure filled with a porous medium saturated by H2O-Cu nanofluid,” Int. J. Num. Meth Heat Fluid Flow., 2018. DOI: 10.1108/HFF-01-2018-0036.
  • A. Baïri, J. G. Bauzin, N. Alilat, and N. Laraqi, Free convection within a hemispherical annulus through a Cu-water nanofluid saturated porous medium. Seminar on applied convective heat transfer, universidad del pais vasco (Spain), Proc. ACHT-THJ, Paper 17/ 28-30 August 2017, pp. 98–107 (2017).
  • D. M. Babu, P. K. Nagarajan, R. Sathyamurthy, and S. S. J. Krishnan, “Enhancing the thermal performance of AL2O3/DI water nanofluids in micro-fin tube equipped with straight and left-right twisted tapes in turbulent flow regime,” Exper Heat Transfer, vol. 30, no. 4, pp.267–283, 2017. DOI: 10.1080/08916152.2016.1238857.
  • S. Patankar, Numerical heat transfer and fluid flow, series in computational methods in mechanics and thermal science, Taylor and Francis Publishers, ISBN 0-89116-522-3, 1980.
  • K. Ghasemi and M. Siavashi, “MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios,” J Magn Magn Mater, vol. 442, pp. 474–490, 2017. DOI: 10.1016/j.jmmm.2017.07.028.
  • M. Corcione, “Empirical correlating equations for predicting the effective conductivity and dynamic viscosity of nanofluids,” Energy Conversion Manag., vol. 25, pp. 789–793, 2011. DOI: 10.1016/j.enconman.2010.06.072.
  • E. Pourfarzad, K. Ghadiri, A. Behrangzade, and M. Ashjaee, “Experimental investigation of heat transfer and pressure drop of alumina–water nanofluid in a porous miniature heat sink,” Experimental Heat Transfer, vol. 31, no. 6, pp.495–512, 2018. DOI: 10.1080/08916152.2018.1451413.
  • A. Raisi, “Heat transfer in an enclosure filled with a nanofluid and containing a heat-generating conductive body,” Appl. Thermal Eng., vol. 110, pp. 469–480, 2017. DOI: 10.1016/j.applthermaleng.2016.08.183.
  • K. Khanafer, K. Vafai, and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids,” Int. J. Heat Mass. Transf, vol. 46, pp. 3639–3653, 2003. DOI: 10.1016/S0017-9310(03)00156-X.
  • J. P. Guinart, Conception et réalisation d’un montage de caractérisation thermique des matériaux par la méthode de la source transitoire plane (TPS). Research Master’s thesis, specialité Energétique, Propulsion Aéronautique et Terrestre, Environnement (EPATE). Univ de Paris, Laboratoire, Thermique Interfaces Environnement (LTIE-GTE EA 4415): Sept, 2010.
  • S. E. Gustafsson, “Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials,” Rev. Science. Instrum., vol. 62, pp. 797–804, 1991. DOI: 10.1063/1.1142087.
  • TPS, Hot Disk TPS. 2500. https://www.hotdiskinstruments.com/technology/
  • Mercury-Porosimetry. https://www.mri.psu.edu/materials-characterization-lab/characterization-techniques/mercury-porosimetry

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.