Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 32, 2019 - Issue 5
105
Views
0
CrossRef citations to date
0
Altmetric
Articles

Application of reduced scale tests to improve the thermal performance of high-voltage substation connectors

, &
Pages 439-454 | Received 29 Nov 2017, Accepted 19 Oct 2018, Published online: 02 Nov 2018

References

  • F. Capelli, J.-R. Riba, and J. Pérez, “Three-dimensional finite-element analysis of the short-time and peak withstand current tests in substation connectors,” Energies, vol. 9, no. 6, pp. 418, May 2016. DOI: 10.3390/en9060418.
  • C. Abomailek, F. Capelli, J.-R. Riba, and P. Casals-Torrens, “Transient thermal modelling of substation connectors by means of dimensionality reduction,” Appl. Therm. Eng., vol. 111, pp. 562–572, 2017. DOI: 10.1016/j.applthermaleng.2016.09.110.
  • C. P. Coutinho, A. J. Baptista, and J. Dias Rodrigues, “Reduced scale models based on similitude theory: A review up to 2015,” Eng. Struct., vol. 119, pp. 81–94, 2016. DOI: 10.1016/j.engstruct.2016.04.016.
  • H. Li, N. Shu, X. Wu, H. Peng, and Z. Li, “Scale modeling on the overheat failure of bus contacts in gas-insulated switchgears,” IEEE Trans. Magn., vol. 50, no. 2, pp. 305–308, Feb. 2014. DOI: 10.1109/TMAG.2013.2281997.
  • Q. Yang, Y. Chen, W. Sima, and H. Zhao, “Measurement and analysis of transient overvoltage distribution in transformer windings based on reduced-scale model,” Electr. Power Syst. Res., vol. 140, pp. 70–77, 2016. DOI: 10.1016/j.epsr.2016.06.039.
  • S. A. Sebo, et al., “Development of reduced-scale line modeling for the study of hybrid corona,” in Proceedings of IEEE Conference on Electrical Insulation and Dielectric Phenomena - (CEIDP ’93), pp. 538–543
  • S. Rabe and B. Schartel, “The rapid mass calorimeter: understanding reduced-scale fire test results,” Polym. Test., vol. 57, pp. 165–174, 2017. DOI: 10.1016/j.polymertesting.2016.11.027.
  • J. Hernandez-Guiteras, J. R. Riba, P. Casals-Torrens, and R. Bosch, “Feasibility analysis of reduced-scale air breakdown tests in high voltage laboratories combined with the use of scaled test cages,” IEEE Trans. Dielectr. Electr. Insul, vol. 20, pp. 1590–1597, 2013. DOI: 10.1109/TDEI.2013.6633688.
  • A. A. Alnaqi, D. C. Barton, and P. C. Brooks, “Reduced scale thermal characterization of automotive disc brake,” Appl. Therm. Eng., vol. 75, pp. 658–668, 2015. DOI: 10.1016/j.applthermaleng.2014.10.001.
  • F. Meinert, et al., “A correlation study of wind tunnels for reduced-scale automotive aerodynamic development,” SAE Int. J. Passeng. Cars Mech. Syst., vol. 9, no. 2, pp. 2016–01–1598, Apr. 2016. DOI: 10.4271/2016-01-1598.
  • Joseph Chambers. Modeling Flight : The Role of Dynamically Scale. NASA, 2015.Washington DC.
  • S. Lebental, et al., “Optimization of the aerodynamics of small-scale flapping aircraft in Hover,” Ph.D.,Duke Univ., 2008.
  • S. D. Sudhoff, et al., “A reduced scale naval DC microgrid to support electric ship research and development,” 2015 IEEE Electric Ship Technologies Symposium (ESTS), New York, USA, pp. 464–471, 2015.
  • T. P. Hong, Q. Do Van, and T. V. Viet, “Grounding resistance calculation using FEM and reduced scale model,” 2009 IEEE Conference on Electrical Insulation and Dielectric Phenomena, New York, USA, pp. 278–281, 2009.
  • M. A. Brubaker, S. R. Lindgren, G. K. Frimpong, and J. M. Walden, “Streaming electrification measurements in a 1/4-scale transformer model,” IEEE Trans. Power Deliv., vol. 14, no. 3, pp. 978–985, Jul. 1999. DOI: 10.1109/61.772343.
  • ANSI/NEMA. “ANSI/NEMA CC1,” in Electric Power Connection for Substation, Virginia: Rosslyn, pp. 57, 2009.
  • International Electrotechnical Commission. “IEC 62271-1:2007,” in High-Voltage Switchgear and Controlgear - Part 1: Common Specifications, International Electrotechnical Commission, Geneva, Switzerland, 2007, pp. 252.
  • R. Wilkins, T. Saengsuwan, and L. O’Shields, “Short-circuit tests on current-limiting fuses: modelling of the test circuit,” Gener. Transm. Distrib. IEE Proc. C, vol. 140, no. 1 pp. 30–36, Jan. 1993.
  • A. D. Polykrati, C. G. Karagiannopoulos, and P. D. Bourkas, “Thermal effect on electric power network components under short-circuit currents,” Electr. Power Syst. Res., vol. 72, no. 3, pp. 261–267, Dec. 2004. DOI: 10.1016/j.epsr.2004.04.010.
  • F. Yang, et al., “3-D thermal analysis and contact resistance evaluation of power cable joint,” Appl. Therm. Eng., vol. 93, pp. 1183–1192, Jan. 2016. DOI: 10.1016/j.applthermaleng.2015.10.076.
  • M. H. Sabour and R. B. Bhat, “Thermal scale modeling by FEM and test,” J. Aerosp. Eng., vol. 23, no. 1, pp. 24–33, Jan. 2010. DOI: 10.1061/(ASCE)0893-1321(2010)23:1(24).
  • J. Schlabbach and K. H. Rofalski, Power System Engineering: Planning, Design, and Operation of Power Systems and Equipment, Weinheim, Germany: WILEY-VCH Verlag GmbH & Co, 2008.
  • N. Ali, T. Al-Juwaya, and M. Al-Dahhan, “An advanced evaluation of spouted beds scale-up for coating TRISO nuclear fuel particles using Radioactive Particle Tracking (RPT),” Exp. Therm. Fluid Sci., vol. 80, pp. 90–104, 2017. DOI: 10.1016/j.expthermflusci.2016.08.002.
  • C. Lin, et al., “Velocity characteristics in boundary layer flow caused by solitary wave traveling over horizontal bottom,” Exp. Therm. Fluid Sci., vol. 76, pp. 238–252, Sep. 2016. DOI: 10.1016/j.expthermflusci.2016.03.019.
  • R. L. Shannon, “Thermal scale modeling of radiation-conduction-convection systems,” J. Spacecr. Rockets, vol. 10, no. 8, pp. 485–492, Aug. 1973. DOI: 10.2514/3.61914.
  • T. Szirtes, and P. Rózsa, “Dimensional modeling,” in Applied Dimensional Analysis and Modeling, Vol. Chapter 17, 2007, Burlington, MA, USA, pp. 463–525.
  • F. Capelli, J.-R. Riba, and J. Sanllehí, “Finite element analysis to predict temperature rise tests in high-capacity substation connectors,” IET Gener. Transm. Distrib, vol. 11, no. 9, pp. 2283–2291, Jun. 2017. DOI: 10.1049/iet-gtd.2016.1717.
  • J. L. J. Oliver, M. Cervera, and S. Oller, “Isotropic damage models and smeared crack analysis of concrete,” Proc. SCI-C Comput. Aided Anal. Des. Concr. Struct., vol. 945958, pp. 945–958, 1990.
  • Wei Liu, Jing Wang, Yu Li, Zhaowei Zhu, Dianfu Qie, and Li Ding, "Natural convection heat transfer at reduced pressures," Experimental Heat Transfer, 2018. DOI: 10.1080/08916152.2018.1468833
  • C. Abomailek, J.-R. Riba, F. Capelli, and M. Moreno-Eguilaz, “Fast electro-thermal simulation of short-circuit tests,” IET Gener. Transm. Distrib, vol. 11, no. 8, pp. 2124–2129, Jun. 2017. DOI: 10.1049/iet-gtd.2016.2061.
  • S. M. Salehi, H. Karimi, R. Moosavi, and A. A. Dastranj, “Different configurations of capacitance sensor for gas/oil two phase flow measurement: an experimental and numerical study,” Exp. Therm. Fluid Sci., vol. 82, pp. 349–358, Apr. 2017. DOI: 10.1016/j.expthermflusci.2016.11.027.
  • M. Hamzeh, K. Sheshyekani, and G. Kadkhodaei, “Coupled electric–magnetic–thermal–mechanical modelling of busbars under short-circuit conditions,” IET Gener. Transm. Distrib, vol. 10, no. 4, pp. 955–963, Mar. 2016. DOI: 10.1049/iet-gtd.2015.0706.
  • P. Huang, C. Mao, and D. Wang, “Analysis of electromagnetic force for medium frequency transformer with interleaved windings,” IET Gener. Transm. Distrib, vol. 11, no. 8, pp. 2023–2030, Jun. 2017. DOI: 10.1049/iet-gtd.2016.1586.
  • N. H. Bhatt, et al., “Role of water temperature in case of high mass flux spray cooling of a hot AISI 304 steel plate at different initial surface temperatures,” Exp. Heat Transf, vol. 30, no. 5, pp. 369–392, Sep. 2017. DOI: 10.1080/08916152.2016.1269138.
  • Comsol. “COMSOL 4.3 multiphysics user’s guide,” COMSOL, pp. 1292, 2012.
  • M. N. Özişik, Heat Transfer: A Basic Approach. McGraw-Hill, New York, NY, USA, 1985.
  • Q. Liu, L. Wang, A. Mitsuishi, M. Shibahara, and K. Fukuda, “Transient heat transfer for helium gas flowing over a horizontal cylinder in a narrow channel,” Exp. Heat Transf, vol. 30, no. 4, pp. 341–354, Jul. 2017. DOI: 10.1080/08916152.2017.1283373.
  • T. Dixit and I. Ghosh, “Experimental and numerical modeling of metal foam passive radiator at low temperatures,” Exp. Heat Transf, vol. 31, no. 5, pp. 425–435, Sep. 2018. DOI: 10.1080/08916152.2018.1434575.
  • S. Kakaç and Y. Yener, Convective Heat Transfer. 2nd ed. Boca Ratón, Fl, USA: CRC Press, 1994.
  • E. Buckingham, “On physically similar systems; illustrations of the use of dimensional equations,” Phys. Rev., vol. 4, no. 4, pp. 345–376, Oct. 1914. DOI: 10.1103/PhysRev.4.345.
  • G. Yakar, “Experimental analysis of conical baffles with rifts on heat transfer and pressure drop,” Exp. Heat Transf, pp. 1–11. Jun. 2018. DOI: 10.1080/08916152.2018.1473527.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.